All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 118959 by bramlexs22 last updated on 21/Oct/20
∫dxx6−x3?
Answered by Dwaipayan Shikari last updated on 21/Oct/20
∫1x3−1−∫1x3=∫1x(1x−1−x−1x2+x+1)+12x2dx=∫1x(x−1)−x−1x(x2+x+1)dx+12x2=log(x−1x)−∫1x2+x+1+∫1x(x2+x+1)+12x2=log(x−1x)+12x2+∫1x−x+1x2+x+1−∫1x2+x+1dx=log(x−1)+12x2−∫x+2x2+x+1dx=log(x−1)+12x2−12∫2x+1x2+x+1−32∫1x2+x+1=log(x−1)−12log(x2+x+1)+12x2−32∫1(x+12)2+(32)2dx=log(x−1x2+x+1)+12x2−13tan−12x+13+C
Answered by 1549442205PVT last updated on 21/Oct/20
1x6−x3=1x3(x3−1)=1x3−1−1x3=1x3−1−1x31x3−1=1(x−1)(x2+x+1)=ax−1+bx+cx2+x+1⇔1≡(a+b)x2+(a−b+c)x+a−c⇔{a+b=0a−b+c=0a−c=1⇒{2a+c=0a−c=1⇔{a=1/3=−bc=−2/31x3−1=13(x−1)−x+23(x2+x+1)F=∫dxx6−x3=13∫dxx−1−∫dxx3−13.(12∫2x+1x2+x+1+32.1x2+x+1)dx=13ln∣x−1∣+12x2−16ln(x2+x+1)−12∫dx(x+12)2+(32)2=13ln∣x−1∣+12x2−16ln(x2+x+1)−13tan−1(2x+13)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com