All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 118969 by benjo_mathlover last updated on 21/Oct/20
Givenf(x)=sinx+cosxsinx−cosxfindthevalueoff″(x)+f′(x)+1.
Answered by TANMAY PANACEA last updated on 21/Oct/20
f(x)=tanx+1tanx−1=−tan(π4+x)f′(x)=−sec2(π4+x)f″(x)=−2sec2(π4+x)tan(π4+x)1+f′(x)+f″(x)=1−2sec2(π4+x)tan(π4+x)−sec2(π4+x)
Answered by bramlexs22 last updated on 21/Oct/20
f′(x)=(cosx−sinx)(sinx−cosx)−(sinx+cosx)(cosx+sinx)1−sin2x=sin2x−1−(1+sin2x)1−sin2x=−21−sin2xf″(x)=0−(−2)(−2cos2x)(1−sin2x)2=−4cos2x(1−sin2x)2f″(x)+f′(x)+1=−4cos2x−2(1−sin2x)+(1−sin2x)2(1−sin2x)2=−4cos2x+2sin2x−2+1−2sin2x+sin22x(1−sin2x)2=sin22x−4cos2x−1(1−sin2x)2=1−cos22x−4cos2x−1(1−sin2x)2=−cos2x(cos2x+4)(1−sin2x)2
Answered by MJS_new last updated on 21/Oct/20
sinx=tanx1+tan2x∧cosx=11+tan2xlett=tanx⇒t′=1+t2⇒f(x)=t+1t−1f′(x)=−2t′(t−1)2=−2(t2+1)(t−1)2f″(x)=4t′(t+1)(t−1)3=4(t+1)(t2+1)(t−1)31+f′(x)+f″(x)=(t+1)(3t2+5)(t−1)3==−(1+tanx)(5+3tan2x)(1−tanx)3==(sinx+cosx)(3+2cos2x)(sinx−cosx)3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com