Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 118969 by benjo_mathlover last updated on 21/Oct/20

 Given f(x) = ((sin x+cos x)/(sin x−cos x))  find the value of    f ′′(x) + f ′(x) + 1 .

Givenf(x)=sinx+cosxsinxcosxfindthevalueoff(x)+f(x)+1.

Answered by TANMAY PANACEA last updated on 21/Oct/20

f(x)=((tanx+1)/(tanx−1))=−tan((π/4)+x)  f^′ (x)=−sec^2 ((π/4)+x)  f^(′′) (x)=−2sec^2 ((π/4)+x)tan((π/4)+x)  1+f^′ (x)+f^(′′) (x)=1−2sec^2 ((π/4)+x)tan((π/4)+x)−sec^2 ((π/4)+x)

f(x)=tanx+1tanx1=tan(π4+x)f(x)=sec2(π4+x)f(x)=2sec2(π4+x)tan(π4+x)1+f(x)+f(x)=12sec2(π4+x)tan(π4+x)sec2(π4+x)

Answered by bramlexs22 last updated on 21/Oct/20

 f ′(x) = (((cos x−sin x)(sin x−cos x)−(sin x+cos x)(cos x+sin x))/(1−sin 2x))            = ((sin 2x−1−(1+sin 2x))/(1−sin 2x)) = ((−2)/(1−sin 2x))  f ′′(x) = ((0−(−2)(−2cos 2x))/((1−sin 2x)^2 )) = ((−4cos 2x)/((1−sin 2x)^2 ))    f ′′(x)+f ′(x)+1 = ((−4cos 2x−2(1−sin 2x)+(1−sin 2x)^2 )/((1−sin 2x)^2 ))    = ((−4cos 2x+2sin 2x−2+1−2sin 2x+sin^2 2x)/((1−sin 2x)^2 ))    = ((sin^2 2x−4cos 2x−1)/((1−sin 2x)^2 )) = ((1−cos^2 2x−4cos 2x−1)/((1−sin 2x)^2 ))   = ((−cos 2x(cos 2x+4))/((1−sin 2x)^2 ))

f(x)=(cosxsinx)(sinxcosx)(sinx+cosx)(cosx+sinx)1sin2x=sin2x1(1+sin2x)1sin2x=21sin2xf(x)=0(2)(2cos2x)(1sin2x)2=4cos2x(1sin2x)2f(x)+f(x)+1=4cos2x2(1sin2x)+(1sin2x)2(1sin2x)2=4cos2x+2sin2x2+12sin2x+sin22x(1sin2x)2=sin22x4cos2x1(1sin2x)2=1cos22x4cos2x1(1sin2x)2=cos2x(cos2x+4)(1sin2x)2

Answered by MJS_new last updated on 21/Oct/20

sin x =((tan x)/( (√(1+tan^2  x))))∧cos x =(1/( (√(1+tan^2  x))))  let t=tan x ⇒ t′=1+t^2   ⇒  f(x)=((t+1)/(t−1))  f′(x)=−((2t′)/((t−1)^2 ))=−((2(t^2 +1))/((t−1)^2 ))  f′′(x)=((4t′(t+1))/((t−1)^3 ))=((4(t+1)(t^2 +1))/((t−1)^3 ))  1+f′(x)+f′′(x)=(((t+1)(3t^2 +5))/((t−1)^3 ))=  =−(((1+tan x)(5+3tan^2  x))/((1−tan x)^3 ))=  =(((sin x +cos x)(3+2cos^2  x))/((sin x −cos x)^3 ))

sinx=tanx1+tan2xcosx=11+tan2xlett=tanxt=1+t2f(x)=t+1t1f(x)=2t(t1)2=2(t2+1)(t1)2f(x)=4t(t+1)(t1)3=4(t+1)(t2+1)(t1)31+f(x)+f(x)=(t+1)(3t2+5)(t1)3==(1+tanx)(5+3tan2x)(1tanx)3==(sinx+cosx)(3+2cos2x)(sinxcosx)3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com