Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119006 by A8;15: last updated on 21/Oct/20

Answered by Dwaipayan Shikari last updated on 21/Oct/20

∫_(1/2) ^2 ((tan^(−1) x)/(x^2 −x+1))dx=I  =∫_2 ^(1/2) ((tan^(−1) (1/t))/((1/t^2 )−(1/t)+1)).(dt/(−t^2 ))                x=(1/t)⇒1=(1/(−t^2 )).(dt/dx)  =∫_(1/2) ^2 (((π/2)−tan^(−1) t)/(t^2 −t+1))dt=I  2I=∫_(1/2) ^2 ((π/2)/(t^2 −t+1))dt  4I=π∫_(1/2) ^2 (1/(t^2 −t+1))dt  ((4I)/π)=∫_(1/2) ^2 (1/((t−(1/2))^2 +(((√3)/2))^2 ))dt  ((4I)/π)=(2/( (√3)))[tan^(−1) ((2t−1)/( (√3)))]_(1/2) ^2   I=(π/4).(2/( (√3))).(π/3)=(π^2 /( 6(√3)))

122tan1xx2x+1dx=I=212tan11t1t21t+1.dtt2x=1t1=1t2.dtdx=122π2tan1tt2t+1dt=I2I=122π2t2t+1dt4I=π1221t2t+1dt4Iπ=1221(t12)2+(32)2dt4Iπ=23[tan12t13]122I=π4.23.π3=π263

Commented by A8;15: last updated on 21/Oct/20

thanks sir

Answered by Bird last updated on 22/Oct/20

we put for a>0  f(a)=∫_(1/a) ^a  ((arctanx)/(x^2 −x+1))dx  ⇒f(a)=_(x=(1/t))  −∫_(1/a) ^a  (((π/2)−arctant)/((1/t^2 )−(1/t)+1))(−(dt/t^2 ))  =∫_(1/a) ^a  (((π/2)−arctant)/(1−t +t^2 ))dt  =(π/2)∫_(1/a) ^a (dt/(t^2 −t+1))−f(a) ⇒  2f(a) =(π/2)∫_(1/a) ^a  (dt/((t−(1/2))^2 +(3/4)))  =_(t−(1/2)=((√3)/2)z)   (π/2)×(4/3)∫_(((2/a)−1)/( (√3))) ^((2a−1)/( (√3)))     (1/(1+z^2 ))×((√3)/2)dz  =((2π)/3)×((√3)/2){arctan(((2a−1)/( (√3))))−arctan((((2/a)−1)/( (√3))))}  =(π/( (√3))){arctan(((2a−1)/( (√3))))−arctan((((2/a)−1)/( (√3))))}  2f(2)=(π/( (√3))){ arctan((√3))−arctan(0)}  =(π/( (√3)))×(π/3) =(π^2 /(3(√3))) ⇒f(2)=(π^2 /(6(√3)))

weputfora>0f(a)=1aaarctanxx2x+1dxf(a)=x=1t1aaπ2arctant1t21t+1(dtt2)=1aaπ2arctant1t+t2dt=π21aadtt2t+1f(a)2f(a)=π21aadt(t12)2+34=t12=32zπ2×432a132a1311+z2×32dz=2π3×32{arctan(2a13)arctan(2a13)}=π3{arctan(2a13)arctan(2a13)}2f(2)=π3{arctan(3)arctan(0)}=π3×π3=π233f(2)=π263

Terms of Service

Privacy Policy

Contact: info@tinkutara.com