Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 119007 by bramlexs22 last updated on 21/Oct/20

Given point A=(7,26) and B=(12,12) , find  all points P such that ∣AP ∣ = ∣ BP ∣ and ∠APB = 90° .

$${Given}\:{point}\:{A}=\left(\mathrm{7},\mathrm{26}\right)\:{and}\:{B}=\left(\mathrm{12},\mathrm{12}\right)\:,\:{find} \\ $$$${all}\:{points}\:{P}\:{such}\:{that}\:\mid{AP}\:\mid\:=\:\mid\:{BP}\:\mid\:{and}\:\angle{APB}\:=\:\mathrm{90}°\:. \\ $$

Answered by bemath last updated on 21/Oct/20

 Note that the triangle ABP is an isosceles right  triangle with ∣AP ∣ = ∣BP ∣. Let Q be the midpoint  of segment AB. Then Q=(((19)/2) ,19), where  ∣QA∣ = ∣QB∣ = ∣QP ∣  and QA ⊥ QB  Thus Q^→ A^→  = ((5/2),−7) and Q^→ P = (7,(5/2))   or (−7,−(5/2)). Let O=(0,0) be the origin , it follows that  OP^→  = OQ^→  + QP^→  = (((19)/2), 19) ±(7,(5/2)).  Consequently P = (((33)/2), ((43)/2)) or ((5/2), ((33)/2))

$$\:{Note}\:{that}\:{the}\:{triangle}\:{ABP}\:{is}\:{an}\:{isosceles}\:{right} \\ $$$${triangle}\:{with}\:\mid{AP}\:\mid\:=\:\mid{BP}\:\mid.\:{Let}\:{Q}\:{be}\:{the}\:{midpoint} \\ $$$${of}\:{segment}\:{AB}.\:{Then}\:{Q}=\left(\frac{\mathrm{19}}{\mathrm{2}}\:,\mathrm{19}\right),\:{where} \\ $$$$\mid{QA}\mid\:=\:\mid{QB}\mid\:=\:\mid{QP}\:\mid\:\:{and}\:{QA}\:\bot\:{QB} \\ $$$${Thus}\:\overset{\rightarrow} {{Q}}\overset{\rightarrow} {{A}}\:=\:\left(\frac{\mathrm{5}}{\mathrm{2}},−\mathrm{7}\right)\:{and}\:\overset{\rightarrow} {{Q}P}\:=\:\left(\mathrm{7},\frac{\mathrm{5}}{\mathrm{2}}\right)\: \\ $$$${or}\:\left(−\mathrm{7},−\frac{\mathrm{5}}{\mathrm{2}}\right).\:{Let}\:{O}=\left(\mathrm{0},\mathrm{0}\right)\:{be}\:{the}\:{origin}\:,\:{it}\:{follows}\:{that} \\ $$$${O}\overset{\rightarrow} {{P}}\:=\:{O}\overset{\rightarrow} {{Q}}\:+\:{Q}\overset{\rightarrow} {{P}}\:=\:\left(\frac{\mathrm{19}}{\mathrm{2}},\:\mathrm{19}\right)\:\pm\left(\mathrm{7},\frac{\mathrm{5}}{\mathrm{2}}\right). \\ $$$${Consequently}\:{P}\:=\:\left(\frac{\mathrm{33}}{\mathrm{2}},\:\frac{\mathrm{43}}{\mathrm{2}}\right)\:{or}\:\left(\frac{\mathrm{5}}{\mathrm{2}},\:\frac{\mathrm{33}}{\mathrm{2}}\right) \\ $$

Answered by 1549442205PVT last updated on 21/Oct/20

AB^(→) =(5,−14)  Midpoint of AB is M(((19)/2),19),AP=BP  ⇒P(x,y) lying on the midline d of AB,so  MP^(→) =(((19)/2)−x,19−y) perpendicular to  AB^(→) ⇔AB^(→) .MP^(→) =0⇔5(((19)/2)−x)−14(19−y)=0  ⇔5x−14y+218.5=0⇒P(x,((5x+218.5)/(14)))  AP^(→) =(x−7,((5x−145.5)/(14))),BP^(→) =(x−12,((5x+50.5)/(14)))  APB^(�) =90°⇔AP^(→) ⊥BP^(→) ⇔AP^(→) .BP^(→) =0  ⇔(x−7)(x−12)+(((5x−145.5)/(14)))(((5x+50.5)/(14)))=0  x^2 −19x+84+((25x^2 −475x−7347.25)/(196))=0  221x^2 −4199x+9116.75=0  x_1 =16.5,x_2 =2.5.We get two the pointP  P_1 (16.5,((43)/2)),P_2 (2.5,((33)/2))

$$\overset{\rightarrow} {\mathrm{AB}}=\left(\mathrm{5},−\mathrm{14}\right) \\ $$$$\mathrm{Midpoint}\:\mathrm{of}\:\mathrm{AB}\:\mathrm{is}\:\mathrm{M}\left(\frac{\mathrm{19}}{\mathrm{2}},\mathrm{19}\right),\mathrm{AP}=\mathrm{BP} \\ $$$$\Rightarrow\mathrm{P}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{lying}\:\mathrm{on}\:\mathrm{the}\:\mathrm{midline}\:\mathrm{d}\:\mathrm{of}\:\mathrm{AB},\mathrm{so} \\ $$$$\overset{\rightarrow} {\mathrm{MP}}=\left(\frac{\mathrm{19}}{\mathrm{2}}−\mathrm{x},\mathrm{19}−\mathrm{y}\right)\:\mathrm{perpendicular}\:\mathrm{to} \\ $$$$\overset{\rightarrow} {\mathrm{AB}}\Leftrightarrow\overset{\rightarrow} {\mathrm{AB}}.\overset{\rightarrow} {\mathrm{MP}}=\mathrm{0}\Leftrightarrow\mathrm{5}\left(\frac{\mathrm{19}}{\mathrm{2}}−\mathrm{x}\right)−\mathrm{14}\left(\mathrm{19}−\mathrm{y}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{5x}−\mathrm{14y}+\mathrm{218}.\mathrm{5}=\mathrm{0}\Rightarrow\mathrm{P}\left(\mathrm{x},\frac{\mathrm{5x}+\mathrm{218}.\mathrm{5}}{\mathrm{14}}\right) \\ $$$$\overset{\rightarrow} {\mathrm{AP}}=\left(\mathrm{x}−\mathrm{7},\frac{\mathrm{5x}−\mathrm{145}.\mathrm{5}}{\mathrm{14}}\right),\overset{\rightarrow} {\mathrm{BP}}=\left(\mathrm{x}−\mathrm{12},\frac{\mathrm{5x}+\mathrm{50}.\mathrm{5}}{\mathrm{14}}\right) \\ $$$$\widehat {\mathrm{APB}}=\mathrm{90}°\Leftrightarrow\overset{\rightarrow} {\mathrm{AP}}\bot\overset{\rightarrow} {\mathrm{BP}}\Leftrightarrow\overset{\rightarrow} {\mathrm{AP}}.\overset{\rightarrow} {\mathrm{BP}}=\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{x}−\mathrm{7}\right)\left(\mathrm{x}−\mathrm{12}\right)+\left(\frac{\mathrm{5x}−\mathrm{145}.\mathrm{5}}{\mathrm{14}}\right)\left(\frac{\mathrm{5x}+\mathrm{50}.\mathrm{5}}{\mathrm{14}}\right)=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{19x}+\mathrm{84}+\frac{\mathrm{25x}^{\mathrm{2}} −\mathrm{475x}−\mathrm{7347}.\mathrm{25}}{\mathrm{196}}=\mathrm{0} \\ $$$$\mathrm{221x}^{\mathrm{2}} −\mathrm{4199x}+\mathrm{9116}.\mathrm{75}=\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1}} =\mathrm{16}.\mathrm{5},\mathrm{x}_{\mathrm{2}} =\mathrm{2}.\mathrm{5}.\mathrm{We}\:\mathrm{get}\:\mathrm{two}\:\mathrm{the}\:\mathrm{pointP} \\ $$$$\mathrm{P}_{\mathrm{1}} \left(\mathrm{16}.\mathrm{5},\frac{\mathrm{43}}{\mathrm{2}}\right),\mathrm{P}_{\mathrm{2}} \left(\mathrm{2}.\mathrm{5},\frac{\mathrm{33}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com