Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119021 by A8;15: last updated on 21/Oct/20

Answered by MJS_new last updated on 21/Oct/20

∫((√(sin x))/( (√(sin x))+(√(cos x))))dx=∫((√(tan x))/(1+(√(tan x))))dx=       [t=(√(tan x)) → dx=((2t)/(t^4 +1))dt]  =2∫(t^2 /((t+1)(t^4 +1)))dt  now decompose  I get  ln (t+1) −((1−(√2))/4)ln (t^2 −(√2)t+1) −((1+(√2))/4)ln (t^2 +(√2)t+1) +       +(1/2)(arctan ((√2)t−1) −arctan ((√2)t+1)) +C

sinxsinx+cosxdx=tanx1+tanxdx=[t=tanxdx=2tt4+1dt]=2t2(t+1)(t4+1)dtnowdecomposeIgetln(t+1)124ln(t22t+1)1+24ln(t2+2t+1)++12(arctan(2t1)arctan(2t+1))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com