Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119038 by MJS_new last updated on 21/Oct/20

∫_(−π/4) ^(+π/4) ((√(1+tan x))/( (√(1−tan x))))dx

+π/4π/41+tanx1tanxdx

Answered by mindispower last updated on 21/Oct/20

=∫_(−(π/4)) ^(π/4) ((√(1−tg(x)))/( (√(1+tg(x)))))dx,I=∫((√(1+tg(x)))/( (√(1−tg(x)))))dx  2I=∫_(−(π/4) ) ^(π/4) (((√(1−tg(x)))/( (√(1+tg(x)))))+((√(1+tg(x)))/( (√(1−tg(x))))))dx  =∫_(−(π/4)) ^(π/4) ((1−tg(x)+1+tg(x))/( (√(1−tg^2 (x)))))dx=2∫(dx/( (√(1−tg^2 (x)))))  I=∫_(−(π/4)) ^(π/4) (dx/( (√(1−tg^2 (x)))))=2∫_0 ^(π/4) (dx/( (√(1−tg^2 (x)))))  let tg(x)=t⇒x=arctan(t)⇒dx=(dt/(1+t^2 ))  ⇒2∫_0 ^1 (dt/( (√(1−t^2 ))(1+t^2 )))  t=sin(w)⇒dt=cos(w),(√(1−t^2 ))=cos(w)  ⇔2∫_0 ^(π/2) (dw/(1+sin^2 (w)))=2∫(dw/(1+cos^2 (w)))  =2∫_0 ^(π/2) (1/(cos^2 (w)(2+tg^2 (w))))=2∫_0 ^(π/2) ((d(tg(w)))/(2+tg^2 (w)))  =∫_0 ^(π/2) ((d(tg(w)))/(1+(((tg(w))/( (√2))))^2 ))=(√2)[arctan(((tg(w))/( (√2))))]_0 ^(π/2)   (π/2).(√2)=(π/( (√2))),may bee son mistacks

=π4π41tg(x)1+tg(x)dx,I=1+tg(x)1tg(x)dx2I=π4π4(1tg(x)1+tg(x)+1+tg(x)1tg(x))dx=π4π41tg(x)+1+tg(x)1tg2(x)dx=2dx1tg2(x)I=π4π4dx1tg2(x)=20π4dx1tg2(x)lettg(x)=tx=arctan(t)dx=dt1+t2201dt1t2(1+t2)t=sin(w)dt=cos(w),1t2=cos(w)20π2dw1+sin2(w)=2dw1+cos2(w)=20π21cos2(w)(2+tg2(w))=20π2d(tg(w))2+tg2(w)=0π2d(tg(w))1+(tg(w)2)2=2[arctan(tg(w)2)]0π2π2.2=π2,maybeesonmistacks

Commented by MJS_new last updated on 21/Oct/20

thank you, I get the same answer

thankyou,Igetthesameanswer

Commented by mindispower last updated on 21/Oct/20

withe pleasur sir

withepleasursir

Commented by $@y@m last updated on 22/Oct/20

@mindispower. Please expain me first line of the solution. How signs of Numerator and Denominator got interchanged?

Commented by Dwaipayan Shikari last updated on 22/Oct/20

∫_((−π)/4) ^(π/4) (√((1−tanx)/(1+tanx))) =∫_(−(π/4)) ^(π/4) (√((1+tanx)/(1−tanx)))  Because  ∫_q ^p f(x)dx=∫_q ^p f(p+q−x)dx

π4π41tanx1+tanx=π4π41+tanx1tanxBecauseqpf(x)dx=qpf(p+qx)dx

Commented by $@y@m last updated on 22/Oct/20

@Dwaipayan অনেক ধন্যবাদ. আমি ভুলে গেছিলাম.

Commented by Dwaipayan Shikari last updated on 22/Oct/20

ধন্যবাদ। আপনি কোথায় থাকেন?

Commented by $@y@m last updated on 22/Oct/20

রাঁচি

Commented by MJS_new last updated on 22/Oct/20

Beautiful letters! Sadly I cannot read them.

Commented by Dwaipayan Shikari last updated on 22/Oct/20

first comment Many thanks I have forgotten second comment Thanking you. Where do you live? third comment Ranchi fourth comment সুন্দর হরফ! দু:খিত আমি এটা পড়তে পাচ্ছি না

Answered by $@y@m last updated on 22/Oct/20

∫((√(1+tan x))/( (√(1−tan x))))dx  =∫(√((cos x+sin x)/(cos x−sin x)))dx  =∫(√(((cos x+sin x)/(cos x−sin x))×((cos x+sin x)/(cos x+sin x))))dx  =∫(√(((cos x+sin x)^2 )/(cos^2  x−sin^2  x)))dx  =∫((cos x+sin x)/( (√()cos^2  x−sin^2  x)))dx  =∫((cos x)/( (√(1−2sin^2 x))))dx+∫((sin x)/( (√(2cos^2 x−1))))dx  =∫_(−(1/( (√2)))) ^(1/( (√2))) (dp/( (√(1−2p^2 ))))−∫_(1/( (√2))) ^(1/( (√2))) (dq/( (√(2q^2 −1))))  =(1/( (√2)))[sin^(−1) ((√2)p)]_(−(1/( (√2)))) ^(1/( (√2))) +0  =(1/( (√2))){sin^(−1) (1)−sin^(−1) (−1)}  =(1/( (√2)))((π/2)−((−π)/2))  =(π/( (√2)))

1+tanx1tanxdx=cosx+sinxcosxsinxdx=cosx+sinxcosxsinx×cosx+sinxcosx+sinxdx=(cosx+sinx)2cos2xsin2xdx=cosx+sinx(cos2xsin2x)dx=cosx12sin2xdx+sinx2cos2x1dx=1212dp12p21212dq2q21Missing \left or extra \right=12{sin1(1)sin1(1)}=12(π2π2)=π2

Commented by MJS_new last updated on 22/Oct/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com