Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119052 by shahria14 last updated on 21/Oct/20

Answered by 1549442205PVT last updated on 22/Oct/20

∣x^2 −1∣≤3⇔−3≤x^2 −1≤3⇔−2≤x^2 ≤4  ⇔x^2 ≤4⇔∣x∣≤2⇔−2≤x≤2

$$\mid\mathrm{x}^{\mathrm{2}} −\mathrm{1}\mid\leqslant\mathrm{3}\Leftrightarrow−\mathrm{3}\leqslant\mathrm{x}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{3}\Leftrightarrow−\mathrm{2}\leqslant\mathrm{x}^{\mathrm{2}} \leqslant\mathrm{4} \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{2}} \leqslant\mathrm{4}\Leftrightarrow\mid\mathrm{x}\mid\leqslant\mathrm{2}\Leftrightarrow−\mathrm{2}\leqslant\mathrm{x}\leqslant\mathrm{2} \\ $$$$ \\ $$

Commented by MJS_new last updated on 22/Oct/20

ok but now solve this:  ∣x^2 −5∣≤3

$$\mathrm{ok}\:\mathrm{but}\:\mathrm{now}\:\mathrm{solve}\:\mathrm{this}: \\ $$$$\mid{x}^{\mathrm{2}} −\mathrm{5}\mid\leqslant\mathrm{3} \\ $$

Commented by bemath last updated on 23/Oct/20

min ∣x^2 −5∣ = −5 ∧ ∣−5∣ > 3  ⇒ −3 ≤ x^2 −5≤3   ⇒ 2 ≤ x^2  ≤ 8 → { ((x^2 ≥2 ⇒ x≤−(√2) ∪ x ≥(√2))),((x^2 ≤8⇒−2(√2) ≤ x ≤ 2(√2))) :}  the solution is −2(√2) ≤x≤−(√2) ∪ (√2) ≤x≤2(√2)

$${min}\:\mid{x}^{\mathrm{2}} −\mathrm{5}\mid\:=\:−\mathrm{5}\:\wedge\:\mid−\mathrm{5}\mid\:>\:\mathrm{3} \\ $$$$\Rightarrow\:−\mathrm{3}\:\leqslant\:{x}^{\mathrm{2}} −\mathrm{5}\leqslant\mathrm{3}\: \\ $$$$\Rightarrow\:\mathrm{2}\:\leqslant\:{x}^{\mathrm{2}} \:\leqslant\:\mathrm{8}\:\rightarrow\begin{cases}{{x}^{\mathrm{2}} \geqslant\mathrm{2}\:\Rightarrow\:{x}\leqslant−\sqrt{\mathrm{2}}\:\cup\:{x}\:\geqslant\sqrt{\mathrm{2}}}\\{{x}^{\mathrm{2}} \leqslant\mathrm{8}\Rightarrow−\mathrm{2}\sqrt{\mathrm{2}}\:\leqslant\:{x}\:\leqslant\:\mathrm{2}\sqrt{\mathrm{2}}}\end{cases} \\ $$$${the}\:{solution}\:{is}\:−\mathrm{2}\sqrt{\mathrm{2}}\:\leqslant{x}\leqslant−\sqrt{\mathrm{2}}\:\cup\:\sqrt{\mathrm{2}}\:\leqslant{x}\leqslant\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Answered by MJS_new last updated on 22/Oct/20

since min (x^2 −1) = −1 and ∣−1∣≤3  ⇒ it′s enough to calculate  x^2 −1≤3 ⇔ x^2 ≤4 ⇔ −2≤x≤2

$$\mathrm{since}\:\mathrm{min}\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:=\:−\mathrm{1}\:\mathrm{and}\:\mid−\mathrm{1}\mid\leqslant\mathrm{3} \\ $$$$\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{enough}\:\mathrm{to}\:\mathrm{calculate} \\ $$$${x}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{3}\:\Leftrightarrow\:{x}^{\mathrm{2}} \leqslant\mathrm{4}\:\Leftrightarrow\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{2} \\ $$

Commented by bemath last updated on 22/Oct/20

typo min (x^2 −1) =−1

$${typo}\:{min}\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:=−\mathrm{1} \\ $$

Commented by MJS_new last updated on 22/Oct/20

yes... the display of my smartphone is too  narrow, so sometimes I hit 2 keys at the  same time...

$$\mathrm{yes}...\:\mathrm{the}\:\mathrm{display}\:\mathrm{of}\:\mathrm{my}\:\mathrm{smartphone}\:\mathrm{is}\:\mathrm{too} \\ $$$$\mathrm{narrow},\:\mathrm{so}\:\mathrm{sometimes}\:\mathrm{I}\:\mathrm{hit}\:\mathrm{2}\:\mathrm{keys}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{time}... \\ $$

Answered by Bird last updated on 21/Oct/20

∣x^2 −1∣≤3 ⇒∣x^2 −1∣−3≤0   ⇒f(x)≤0  sith f(x)=∣x^2 −1∣−3  x            −∞              −1            1          +∞  ∣x^2 −1∣           x^2 −1      0 1−x^2  0    x^2 −1  f(x)                 x^2 −4       −2−x^2        x^2 −4  if x≤−1   f(x)≤0 ⇒x^2 −4 ≤0 ⇒  −2≤x≤2  ⇒S_1 =[−2,−1]  if x∈[−1,1]  f(x)≤0 ⇒−2−x^2 ≤0 ⇒  2+x^2 ≥0 ⇒S_2 =[−1,1]  if x≥1  f(x)≤0 ⇒x^2 −4≤0 ⇒  −2≤x≤2 ⇒S_3 =[1,2] ⇒  S=∪S_i =[−2,2]

$$\mid{x}^{\mathrm{2}} −\mathrm{1}\mid\leqslant\mathrm{3}\:\Rightarrow\mid{x}^{\mathrm{2}} −\mathrm{1}\mid−\mathrm{3}\leqslant\mathrm{0}\: \\ $$$$\Rightarrow{f}\left({x}\right)\leqslant\mathrm{0}\:\:{sith}\:{f}\left({x}\right)=\mid{x}^{\mathrm{2}} −\mathrm{1}\mid−\mathrm{3} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$$\mid{x}^{\mathrm{2}} −\mathrm{1}\mid\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\:\:\mathrm{0}\:\mathrm{1}−{x}^{\mathrm{2}} \:\mathrm{0}\:\:\:\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −\mathrm{4}\:\:\:\:\:\:\:−\mathrm{2}−{x}^{\mathrm{2}} \:\:\:\:\:\:\:{x}^{\mathrm{2}} −\mathrm{4} \\ $$$${if}\:{x}\leqslant−\mathrm{1}\:\:\:{f}\left({x}\right)\leqslant\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}\:\leqslant\mathrm{0}\:\Rightarrow \\ $$$$−\mathrm{2}\leqslant{x}\leqslant\mathrm{2}\:\:\Rightarrow{S}_{\mathrm{1}} =\left[−\mathrm{2},−\mathrm{1}\right] \\ $$$${if}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right]\:\:{f}\left({x}\right)\leqslant\mathrm{0}\:\Rightarrow−\mathrm{2}−{x}^{\mathrm{2}} \leqslant\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{2}+{x}^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow{S}_{\mathrm{2}} =\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${if}\:{x}\geqslant\mathrm{1}\:\:{f}\left({x}\right)\leqslant\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}\leqslant\mathrm{0}\:\Rightarrow \\ $$$$−\mathrm{2}\leqslant{x}\leqslant\mathrm{2}\:\Rightarrow{S}_{\mathrm{3}} =\left[\mathrm{1},\mathrm{2}\right]\:\Rightarrow \\ $$$${S}=\cup{S}_{{i}} =\left[−\mathrm{2},\mathrm{2}\right] \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com