Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 119065 by benjo_mathlover last updated on 21/Oct/20

solve (D^2 −2D+1)y = e^x  ln x   by using the method of variation  of parameters.

$${solve}\:\left({D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{1}\right){y}\:=\:{e}^{{x}} \:\mathrm{ln}\:{x}\: \\ $$$${by}\:{using}\:{the}\:{method}\:{of}\:{variation} \\ $$$${of}\:{parameters}. \\ $$

Answered by Olaf last updated on 22/Oct/20

y = e^x u  y′ = (u′+u)e^x   y′′ = (u′′+2u′+u)e^x     u′′+2u′+u−2(u′+u)+u = lnx  u′′ = lnx  u′ = ∫lnxdx = xlnx−x+C_1   u = ∫(xlnx−x+C_1 )dx  u = (x^2 /2)lnx−∫(x^2 /2).(1/x)dx−(x^2 /2)+C_1 x+C_2   u = (x^2 /2)lnx−(x^2 /4)−(x^2 /2)+C_1 x+C_2   u = (x^2 /2)lnx−((3x^2 )/4)+C_1 x+C_2   y = ((x^2 /2)lnx−((3x^2 )/4)+C_1 x+C_2 )e^x

$${y}\:=\:{e}^{{x}} {u} \\ $$$${y}'\:=\:\left({u}'+{u}\right){e}^{{x}} \\ $$$${y}''\:=\:\left({u}''+\mathrm{2}{u}'+{u}\right){e}^{{x}} \\ $$$$ \\ $$$${u}''+\mathrm{2}{u}'+{u}−\mathrm{2}\left({u}'+{u}\right)+{u}\:=\:\mathrm{ln}{x} \\ $$$${u}''\:=\:\mathrm{ln}{x} \\ $$$${u}'\:=\:\int\mathrm{ln}{xdx}\:=\:{x}\mathrm{ln}{x}−{x}+\mathrm{C}_{\mathrm{1}} \\ $$$${u}\:=\:\int\left({x}\mathrm{ln}{x}−{x}+\mathrm{C}_{\mathrm{1}} \right){dx} \\ $$$${u}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}{x}−\int\frac{{x}^{\mathrm{2}} }{\mathrm{2}}.\frac{\mathrm{1}}{{x}}{dx}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{C}_{\mathrm{1}} {x}+\mathrm{C}_{\mathrm{2}} \\ $$$${u}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{C}_{\mathrm{1}} {x}+\mathrm{C}_{\mathrm{2}} \\ $$$${u}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}{x}−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{C}_{\mathrm{1}} {x}+\mathrm{C}_{\mathrm{2}} \\ $$$${y}\:=\:\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}{x}−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{C}_{\mathrm{1}} {x}+\mathrm{C}_{\mathrm{2}} \right){e}^{{x}} \\ $$

Commented by benjo_mathlover last updated on 22/Oct/20

thank you

$${thank}\:{you} \\ $$

Answered by john santu last updated on 27/Oct/20

For the homogenous solution we solve the   characteristic equation  λ^2 −2λ+1 = 0 , which has a double root λ=1  hence the homogenous solution can be   written as y_h  = (C_1 +C_2 x)e^x   using the homogenous solution we   can now begin using variation of  parameters method   let y_p  = u.e^x  + v.xe^x   Differentiating yields   y ′ = (ue^x +u′e^x )+(v.(x+1)e^x +v′.xe^x )  set u′e^x  + v′xe^x  = 0 or u′+xv′ = 0  we get y′ = ue^x +v.(x+1)e^x   Differentiating again gives   y′′ = ue^x +u′e^x +v(x+2)e^x +v′(x+1)e^x   substituting into the original   differential equation   (ue^x +u′e^x +v(x+2)e^x +v′(x+1)e^x )−  2(ue^x +v(x+1)e^x ) + (ue^x +v.xe^x ) = e^x .ln x  this reduces to   u′+(x+1)v′ = ln x  now we have two equation in u′ and v′   { ((u′+xv′ = 0)),((u′+(x+1)v′ = ln x)) :}   (((1     x)),((1   x+1)) )  (((u′)),((v′)) ) =  (((   0)),((ln x)) )  → { ((u′ = −x ln x)),((v′ = ln x)) :}  integrating with by parts gives   { ((u = −(1/2)x^2 ln x + (1/4)x^(2 ) )),((v = x ln x−x )) :}  thus particular solution equal to  y_p  = −(1/2)x^2  e^x  ln x + (1/4)x^2  e^x           + x^2  e^x  ln x −x^2 e^x    y_p  = (1/2)x^2  e^x  ln x −(3/4)x^2 e^x   Therefore we conclude that a general  solution y = y_h  + y_p   y = (C_1 +C_2 x)e^x + (1/4)(2ln x−3)x^2 e^x

$${For}\:{the}\:{homogenous}\:{solution}\:{we}\:{solve}\:{the}\: \\ $$$${characteristic}\:{equation} \\ $$$$\lambda^{\mathrm{2}} −\mathrm{2}\lambda+\mathrm{1}\:=\:\mathrm{0}\:,\:{which}\:{has}\:{a}\:{double}\:{root}\:\lambda=\mathrm{1} \\ $$$${hence}\:{the}\:{homogenous}\:{solution}\:{can}\:{be}\: \\ $$$${written}\:{as}\:{y}_{{h}} \:=\:\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} {x}\right){e}^{{x}} \\ $$$${using}\:{the}\:{homogenous}\:{solution}\:{we}\: \\ $$$${can}\:{now}\:{begin}\:{using}\:{variation}\:{of} \\ $$$${parameters}\:{method}\: \\ $$$${let}\:{y}_{{p}} \:=\:{u}.{e}^{{x}} \:+\:{v}.{xe}^{{x}} \\ $$$${Differentiating}\:{yields}\: \\ $$$${y}\:'\:=\:\left({ue}^{{x}} +{u}'{e}^{{x}} \right)+\left({v}.\left({x}+\mathrm{1}\right){e}^{{x}} +{v}'.{xe}^{{x}} \right) \\ $$$${set}\:{u}'{e}^{{x}} \:+\:{v}'{xe}^{{x}} \:=\:\mathrm{0}\:{or}\:{u}'+{xv}'\:=\:\mathrm{0} \\ $$$${we}\:{get}\:{y}'\:=\:{ue}^{{x}} +{v}.\left({x}+\mathrm{1}\right){e}^{{x}} \\ $$$${Differentiating}\:{again}\:{gives}\: \\ $$$${y}''\:=\:{ue}^{{x}} +{u}'{e}^{{x}} +{v}\left({x}+\mathrm{2}\right){e}^{{x}} +{v}'\left({x}+\mathrm{1}\right){e}^{{x}} \\ $$$${substituting}\:{into}\:{the}\:{original}\: \\ $$$${differential}\:{equation}\: \\ $$$$\left({ue}^{{x}} +{u}'{e}^{{x}} +{v}\left({x}+\mathrm{2}\right){e}^{{x}} +{v}'\left({x}+\mathrm{1}\right){e}^{{x}} \right)− \\ $$$$\mathrm{2}\left({ue}^{{x}} +{v}\left({x}+\mathrm{1}\right){e}^{{x}} \right)\:+\:\left({ue}^{{x}} +{v}.{xe}^{{x}} \right)\:=\:{e}^{{x}} .\mathrm{ln}\:{x} \\ $$$${this}\:{reduces}\:{to}\: \\ $$$${u}'+\left({x}+\mathrm{1}\right){v}'\:=\:\mathrm{ln}\:{x} \\ $$$${now}\:{we}\:{have}\:{two}\:{equation}\:{in}\:{u}'\:{and}\:{v}' \\ $$$$\begin{cases}{{u}'+{xv}'\:=\:\mathrm{0}}\\{{u}'+\left({x}+\mathrm{1}\right){v}'\:=\:\mathrm{ln}\:{x}}\end{cases} \\ $$$$\begin{pmatrix}{\mathrm{1}\:\:\:\:\:{x}}\\{\mathrm{1}\:\:\:{x}+\mathrm{1}}\end{pmatrix}\:\begin{pmatrix}{{u}'}\\{{v}'}\end{pmatrix}\:=\:\begin{pmatrix}{\:\:\:\mathrm{0}}\\{\mathrm{ln}\:{x}}\end{pmatrix} \\ $$$$\rightarrow\begin{cases}{{u}'\:=\:−{x}\:\mathrm{ln}\:{x}}\\{{v}'\:=\:\mathrm{ln}\:{x}}\end{cases} \\ $$$${integrating}\:{with}\:{by}\:{parts}\:{gives} \\ $$$$\begin{cases}{{u}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{ln}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}\:} }\\{{v}\:=\:{x}\:\mathrm{ln}\:{x}−{x}\:}\end{cases} \\ $$$${thus}\:{particular}\:{solution}\:{equal}\:{to} \\ $$$${y}_{{p}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \:{e}^{{x}} \:\mathrm{ln}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} \:{e}^{{x}} \:\: \\ $$$$\:\:\:\:\:\:+\:{x}^{\mathrm{2}} \:{e}^{{x}} \:\mathrm{ln}\:{x}\:−{x}^{\mathrm{2}} {e}^{{x}} \: \\ $$$${y}_{{p}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \:{e}^{{x}} \:\mathrm{ln}\:{x}\:−\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} {e}^{{x}} \\ $$$${Therefore}\:{we}\:{conclude}\:{that}\:{a}\:{general} \\ $$$${solution}\:{y}\:=\:{y}_{{h}} \:+\:{y}_{{p}} \\ $$$${y}\:=\:\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} {x}\right){e}^{{x}} +\:\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2ln}\:{x}−\mathrm{3}\right){x}^{\mathrm{2}} {e}^{{x}} \\ $$

Answered by TANMAY PANACEA last updated on 22/Oct/20

P.I=((e^x lnx)/((D−1)^2 ))=e^x ×(1/((D+1−1)^2 ))×lnx  =(e^x /1)×((lnx)/D^2 )  (1/D)×lnx=xlnx−x  (1/D^2 )lnx=∫(xlnx−x)dx  =lnx×(x^2 /2)−∫(1/x)×(x^2 /2)dx−(x^2 /2)  =((x^2 lnx)/2)−(x^2 /4)−(x^2 /2)  =(x^2 /2)(lnx−(1/2)−1)=(x^2 /2)(((−3)/2)+lnx)  snsser  ((e^x ×x^2 )/2)o(((−3)/2)+lnx)

$${P}.{I}=\frac{{e}^{{x}} {lnx}}{\left({D}−\mathrm{1}\right)^{\mathrm{2}} }={e}^{{x}} ×\frac{\mathrm{1}}{\left({D}+\mathrm{1}−\mathrm{1}\right)^{\mathrm{2}} }×{lnx} \\ $$$$=\frac{{e}^{{x}} }{\mathrm{1}}×\frac{{lnx}}{{D}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{D}}×{lnx}={xlnx}−{x} \\ $$$$\frac{\mathrm{1}}{{D}^{\mathrm{2}} }{lnx}=\int\left({xlnx}−{x}\right){dx} \\ $$$$={lnx}×\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\int\frac{\mathrm{1}}{{x}}×\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{dx}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{{x}^{\mathrm{2}} {lnx}}{\mathrm{2}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\left({lnx}−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{−\mathrm{3}}{\mathrm{2}}+{lnx}\right) \\ $$$${snsser} \\ $$$$\frac{{e}^{{x}} ×{x}^{\mathrm{2}} }{\mathrm{2}}{o}\left(\frac{−\mathrm{3}}{\mathrm{2}}+{lnx}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com