Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119159 by mathocean1 last updated on 22/Oct/20

We are in C.  Given Z_(0  ) =1 ;     Z_(n+1 ) =(1/2)Z_(n ) +(1/2)i  n ∈ N.  Show that ∀ n ∈ N^(∗ ) , ∣Z_n ∣<1.

$${We}\:{are}\:{in}\:\mathbb{C}. \\ $$ $${Given}\:{Z}_{\mathrm{0}\:\:} =\mathrm{1}\:;\:\:\:\:\:{Z}_{{n}+\mathrm{1}\:} =\frac{\mathrm{1}}{\mathrm{2}}{Z}_{{n}\:} +\frac{\mathrm{1}}{\mathrm{2}}{i} \\ $$ $${n}\:\in\:\mathbb{N}. \\ $$ $${Show}\:{that}\:\forall\:{n}\:\in\:\mathbb{N}^{\ast\:} ,\:\mid{Z}_{{n}} \mid<\mathrm{1}. \\ $$

Answered by Olaf last updated on 22/Oct/20

Let U_n  = Z_n −i, n∈N  ⇒ U_0  = 1−i  and  U_(n+1)  = Z_(n+1) −i = (1/2)Z_n −(1/2)i = (1/2)U_n   ⇒ U_n  = U_0 ((1/2))^n  = ((1−i)/2^n )  and Z_n = ((1−i)/2^n )+i = (1/2^n )(1+(2^n −1)i)  ∣Z_n ∣ = ((√(1+(2^n −1)^2 ))/2^n ) < ((√2^(2n) )/2^n ) = 1, n∈N^∗   and ∣Z_0 ∣ = (√2)

$$\mathrm{Let}\:{U}_{{n}} \:=\:{Z}_{{n}} −{i},\:{n}\in\mathbb{N} \\ $$ $$\Rightarrow\:{U}_{\mathrm{0}} \:=\:\mathrm{1}−{i}\:\:\mathrm{and} \\ $$ $${U}_{{n}+\mathrm{1}} \:=\:{Z}_{{n}+\mathrm{1}} −{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{Z}_{{n}} −\frac{\mathrm{1}}{\mathrm{2}}{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{U}_{{n}} \\ $$ $$\Rightarrow\:{U}_{{n}} \:=\:{U}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \:=\:\frac{\mathrm{1}−{i}}{\mathrm{2}^{{n}} } \\ $$ $$\mathrm{and}\:{Z}_{{n}} =\:\frac{\mathrm{1}−{i}}{\mathrm{2}^{{n}} }+{i}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\mathrm{1}+\left(\mathrm{2}^{{n}} −\mathrm{1}\right){i}\right) \\ $$ $$\mid{Z}_{{n}} \mid\:=\:\frac{\sqrt{\mathrm{1}+\left(\mathrm{2}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}^{{n}} }\:<\:\frac{\sqrt{\mathrm{2}^{\mathrm{2}{n}} }}{\mathrm{2}^{{n}} }\:=\:\mathrm{1},\:{n}\in\mathbb{N}^{\ast} \\ $$ $$\mathrm{and}\:\mid{Z}_{\mathrm{0}} \mid\:=\:\sqrt{\mathrm{2}} \\ $$

Answered by mathmax by abdo last updated on 22/Oct/20

by recurrence n=1 ⇒z_1 =(1/2)z_0 +(i/2) =(1/2)+(i/2) ⇒∣z_1 ∣=(1/2)∣1+i∣  =((√2)/2)<1   relation true for n=1 let suppise ∣z_n ∣<1  we hsve ∣z_(n+1) ∣=(1/2)∣z_n +i∣≤(1/2)∣z_n ∣+(1/2)<(1/2)+(1/2)=1 ⇒∣z_(n+1) ∣<1  relation is true at term n+1

$$\mathrm{by}\:\mathrm{recurrence}\:\mathrm{n}=\mathrm{1}\:\Rightarrow\mathrm{z}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}_{\mathrm{0}} +\frac{\mathrm{i}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{i}}{\mathrm{2}}\:\Rightarrow\mid\mathrm{z}_{\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{1}+\mathrm{i}\mid \\ $$ $$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}<\mathrm{1}\:\:\:\mathrm{relation}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{1}\:\mathrm{let}\:\mathrm{suppise}\:\mid\mathrm{z}_{\mathrm{n}} \mid<\mathrm{1} \\ $$ $$\mathrm{we}\:\mathrm{hsve}\:\mid\mathrm{z}_{\mathrm{n}+\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{z}_{\mathrm{n}} +\mathrm{i}\mid\leqslant\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{z}_{\mathrm{n}} \mid+\frac{\mathrm{1}}{\mathrm{2}}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1}\:\Rightarrow\mid\mathrm{z}_{\mathrm{n}+\mathrm{1}} \mid<\mathrm{1} \\ $$ $$\mathrm{relation}\:\mathrm{is}\:\mathrm{true}\:\mathrm{at}\:\mathrm{term}\:\mathrm{n}+\mathrm{1} \\ $$

Commented bymathocean1 last updated on 25/Oct/20

Thank you sirs.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sirs}. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com