Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 11920 by carrot last updated on 05/Apr/17

differentiate each function from first principle  1)f (x) = 1+(1/x)  2)f(x) = (1/(2x+3))   3) f(x)=sin2x  4)f(x)=co2x

$${differentiate}\:{each}\:{function}\:{from}\:{first}\:{principle} \\ $$$$\left.\mathrm{1}\right){f}\:\left({x}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{3}}\: \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)={sin}\mathrm{2}{x} \\ $$$$\left.\mathrm{4}\right){f}\left({x}\right)={co}\mathrm{2}{x} \\ $$$$ \\ $$

Answered by sandy_suhendra last updated on 05/Apr/17

1)f(x)=1+x^(−1)        f ′(x)=−x^(−2) =((−1)/x^2 )  2)f(x)=(2x+3)^(−1)       f ′(x)=−1(2x+3)^(−2) (2)=((−2)/((2x+3)^2 ))        3)f ′(x)=2cos2x  4)f ′(x)=−2sin2x

$$\left.\mathrm{1}\right)\mathrm{f}\left(\mathrm{x}\right)=\mathrm{1}+\mathrm{x}^{−\mathrm{1}} \\ $$$$\:\:\:\:\:\mathrm{f}\:'\left(\mathrm{x}\right)=−\mathrm{x}^{−\mathrm{2}} =\frac{−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{2x}+\mathrm{3}\right)^{−\mathrm{1}} \\ $$$$\:\:\:\:\mathrm{f}\:'\left(\mathrm{x}\right)=−\mathrm{1}\left(\mathrm{2x}+\mathrm{3}\right)^{−\mathrm{2}} \left(\mathrm{2}\right)=\frac{−\mathrm{2}}{\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{2}} }\:\:\:\:\:\: \\ $$$$\left.\mathrm{3}\right)\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{2cos2x} \\ $$$$\left.\mathrm{4}\right)\mathrm{f}\:'\left(\mathrm{x}\right)=−\mathrm{2sin2x} \\ $$

Commented by carrot last updated on 05/Apr/17

oh what you did was differentiate it and thats not what they asked for

$${oh}\:{what}\:{you}\:{did}\:{was}\:{differentiate}\:{it}\:{and}\:{thats}\:{not}\:{what}\:{they}\:{asked}\:{for} \\ $$

Commented by sandy_suhendra last updated on 06/Apr/17

oh sorry because I don′t understand with the question       but I have fixed for no 3 and 4

$$\mathrm{oh}\:\mathrm{sorry}\:\mathrm{because}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{with}\:\mathrm{the}\:\mathrm{question}\:\:\:\:\: \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{have}\:\mathrm{fixed}\:\mathrm{for}\:\mathrm{no}\:\mathrm{3}\:\mathrm{and}\:\mathrm{4} \\ $$

Answered by FilupS last updated on 05/Apr/17

(1)  f ′(x)=lim_(h→0) ((f(x+h)−f(x))/h)  f ′(x)=lim_(h→0) (((1+(1/(x+h)))−(1+(1/x)))/h)  =lim_(h→0) (((1/(x+h))−(1/x))/h)  =lim_(h→0) (((((x−x−h)/(x^2 +xh))))/h)  =lim_(h→0) (((((−h)/(x^2 +xh))))/h)  =lim_(h→0) (−(1/(x^2 +xh)))  =−(1/x^2 )

$$\left(\mathrm{1}\right) \\ $$$${f}\:'\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$${f}\:'\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}+{h}}\right)−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{{x}+{h}}−\frac{\mathrm{1}}{{x}}}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{{x}−{x}−{h}}{{x}^{\mathrm{2}} +{xh}}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{−{h}}{{x}^{\mathrm{2}} +{xh}}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{xh}}\right) \\ $$$$=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Answered by FilupS last updated on 05/Apr/17

(2)  f ′(x)=lim_(h→0) ((f(x+h)−f(x))/h)  f ′(x)=lim_(h→0) ((((1/(2x+2h+3)))−((1/(2x+3))))/h)  =lim_(h→0) ((((1/(2x+2h+3))−(1/(2x+3))))/h)  =lim_(h→0) (((((2x+3−2x−2h−3)/((2x+2h+3)(2x+3)))))/h)  =lim_(h→0) (((((−2h)/((4x^2 +6x+4hx+6h+6x+9)))))/h)  =lim_(h→0) (((((−2)/((4x^2 +6x+4hx+6h+6x+9)))))/1)  =−(2/(4x^2 +12x+9))  =−(2/((2x+3)^2 ))

$$\left(\mathrm{2}\right) \\ $$$${f}\:'\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$${f}\:'\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}\right)−\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{3}}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{3}}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{2}{x}+\mathrm{3}−\mathrm{2}{x}−\mathrm{2}{h}−\mathrm{3}}{\left(\mathrm{2}{x}+\mathrm{2}{h}+\mathrm{3}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{−\mathrm{2}{h}}{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{4}{hx}+\mathrm{6}{h}+\mathrm{6}{x}+\mathrm{9}\right)}\right)}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{−\mathrm{2}}{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{4}{hx}+\mathrm{6}{h}+\mathrm{6}{x}+\mathrm{9}\right)}\right)}{\mathrm{1}} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{9}} \\ $$$$=−\frac{\mathrm{2}}{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Answered by sandy_suhendra last updated on 06/Apr/17

3) lim_(h→0) ((sin2(x+h)−sin2x)/h)  =lim_(h→0) ((2cos(2x+h) sin h)/h)  =lim_(h→0)  2cos(2x+h) ((sin h)/h)  =2cos(2x+0).1=2cos2x    4)lim_(h→0) ((cos2(x+h)−cos2x)/h)  =lim_(x→0)  ((−2sin(2x+h) sin h)/h)  =lim_(x→0)  −2sin(2x+h) ((sin h)/h)  =−2sin(2x+0).1=−2sin2x

$$\left.\mathrm{3}\right)\:\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{sin2}\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{sin2x}}{\mathrm{h}} \\ $$$$=\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{2cos}\left(\mathrm{2x}+\mathrm{h}\right)\:\mathrm{sin}\:\mathrm{h}}{\mathrm{h}} \\ $$$$=\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\:\mathrm{2cos}\left(\mathrm{2x}+\mathrm{h}\right)\:\frac{\mathrm{sin}\:\mathrm{h}}{\mathrm{h}} \\ $$$$=\mathrm{2cos}\left(\mathrm{2x}+\mathrm{0}\right).\mathrm{1}=\mathrm{2cos2x} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{cos2}\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{cos2x}}{\mathrm{h}} \\ $$$$=\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\:\frac{−\mathrm{2sin}\left(\mathrm{2x}+\mathrm{h}\right)\:\mathrm{sin}\:\mathrm{h}}{\mathrm{h}} \\ $$$$=\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\:−\mathrm{2sin}\left(\mathrm{2x}+\mathrm{h}\right)\:\frac{\mathrm{sin}\:\mathrm{h}}{\mathrm{h}} \\ $$$$=−\mathrm{2sin}\left(\mathrm{2x}+\mathrm{0}\right).\mathrm{1}=−\mathrm{2sin2x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com