Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 119246 by 1549442205PVT last updated on 23/Oct/20

Prove the following  inequalities hold    true ∀x∈R  a)cos(cosx)>0  b)cos(sinx)>sin(cosx)

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\:\mathrm{inequalities}\:\mathrm{hold} \\ $$ $$\:\:\mathrm{true}\:\forall\mathrm{x}\in\mathrm{R} \\ $$ $$\left.\mathrm{a}\right)\mathrm{cos}\left(\mathrm{cosx}\right)>\mathrm{0} \\ $$ $$\left.\mathrm{b}\right)\mathrm{cos}\left(\mathrm{sinx}\right)>\mathrm{sin}\left(\mathrm{cosx}\right) \\ $$

Answered by Olaf last updated on 23/Oct/20

a)  −(π/2) < −1 ≤ cosx ≤ +1 < +(π/2)  ⇒ cos(cosx) > 0 (trivial)

$$\left.{a}\right) \\ $$ $$−\frac{\pi}{\mathrm{2}}\:<\:−\mathrm{1}\:\leqslant\:\mathrm{cos}{x}\:\leqslant\:+\mathrm{1}\:<\:+\frac{\pi}{\mathrm{2}} \\ $$ $$\Rightarrow\:\mathrm{cos}\left(\mathrm{cos}{x}\right)\:>\:\mathrm{0}\:\left(\mathrm{trivial}\right) \\ $$

Answered by mindispower last updated on 23/Oct/20

cos(sin(x))>0,∀x∈R  sin(cos(x))<0,∀x∈[−π,−(π/2)]∪[(π/2),π]  so we worck just in [−(π/2),(π/2)]  x→cos(sin(−x))=cos(sin(−x))  sin(cos(−x))=sin(cos(x))⇒  just x∈[0,(π/2)]  lets[solve in x∈[0,(π/2)]  cos(sin(x))>sin(cos(x))  ⇔  sin((π/2)−sin(x))>sin(cos(x))  since cos(x),(π/2)−sin(x)∈[0,(π/2)] and sin increase  function  ⇔(π/2)−sin(x)>cos(x)  ⇔sin(x)+cos(x)<(π/2)...E  ∣sin(x)+cos(x)∣≤(√(1^2 +1^2 )).(√(cos^2 (x)+sin^2 ))=(√2)<(π/2)  cauchy shwartz..  by equivalent E true  ⇒sin((π/2)−sin(x))>sin(cos(x))  ⇔cos(sin(x))>sin(cos(x))

$${cos}\left({sin}\left({x}\right)\right)>\mathrm{0},\forall{x}\in\mathbb{R} \\ $$ $${sin}\left({cos}\left({x}\right)\right)<\mathrm{0},\forall{x}\in\left[−\pi,−\frac{\pi}{\mathrm{2}}\right]\cup\left[\frac{\pi}{\mathrm{2}},\pi\right] \\ $$ $${so}\:{we}\:{worck}\:{just}\:{in}\:\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right] \\ $$ $${x}\rightarrow{cos}\left({sin}\left(−{x}\right)\right)={cos}\left({sin}\left(−{x}\right)\right) \\ $$ $${sin}\left({cos}\left(−{x}\right)\right)={sin}\left({cos}\left({x}\right)\right)\Rightarrow \\ $$ $${just}\:{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$ $${lets}\left[{solve}\:{in}\:{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\right. \\ $$ $${cos}\left({sin}\left({x}\right)\right)>{sin}\left({cos}\left({x}\right)\right) \\ $$ $$\Leftrightarrow \\ $$ $${sin}\left(\frac{\pi}{\mathrm{2}}−{sin}\left({x}\right)\right)>{sin}\left({cos}\left({x}\right)\right) \\ $$ $${since}\:{cos}\left({x}\right),\frac{\pi}{\mathrm{2}}−{sin}\left({x}\right)\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{and}\:{sin}\:{increase} \\ $$ $${function} \\ $$ $$\Leftrightarrow\frac{\pi}{\mathrm{2}}−{sin}\left({x}\right)>{cos}\left({x}\right) \\ $$ $$\Leftrightarrow{sin}\left({x}\right)+{cos}\left({x}\right)<\frac{\pi}{\mathrm{2}}...{E} \\ $$ $$\mid{sin}\left({x}\right)+{cos}\left({x}\right)\mid\leqslant\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }.\sqrt{{cos}^{\mathrm{2}} \left({x}\right)+{sin}^{\mathrm{2}} }=\sqrt{\mathrm{2}}<\frac{\pi}{\mathrm{2}} \\ $$ $${cauchy}\:{shwartz}.. \\ $$ $${by}\:{equivalent}\:{E}\:{true} \\ $$ $$\Rightarrow{sin}\left(\frac{\pi}{\mathrm{2}}−{sin}\left({x}\right)\right)>{sin}\left({cos}\left({x}\right)\right) \\ $$ $$\Leftrightarrow{cos}\left({sin}\left({x}\right)\right)>{sin}\left({cos}\left({x}\right)\right) \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com