Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 119250 by Pengu last updated on 23/Oct/20

Commented by Pengu last updated on 23/Oct/20

I know a_n =a_n ^h +a_n ^p   a_n ^h ⇒a_n =2a_(n−1)   r^n =a^n  ⇒ r=2  ∴a_n ^h =α2^(n−1)      I do not understand how to solve a_n ^p

$$\mathrm{I}\:\mathrm{know}\:{a}_{{n}} ={a}_{{n}} ^{{h}} +{a}_{{n}} ^{{p}} \\ $$$${a}_{{n}} ^{{h}} \Rightarrow{a}_{{n}} =\mathrm{2}{a}_{{n}−\mathrm{1}} \\ $$$${r}^{{n}} ={a}^{{n}} \:\Rightarrow\:{r}=\mathrm{2} \\ $$$$\therefore{a}_{{n}} ^{{h}} =\alpha\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$\: \\ $$$$\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:{a}_{{n}} ^{{p}} \\ $$

Commented by Pengu last updated on 23/Oct/20

Also, hello. I am not new. I am Filup, and have used this app for many years, but forgot my various account details. I wonder if anyone remembers me �� Filup, FilupErwinSmith, and Penguin have been my previous aliases. I am finally doing a mathematics degree, after many years.

Commented by mr W last updated on 23/Oct/20

welcome back sir!  i still remember the discussion about  the interesting question 12883 from  you some years ago.

$${welcome}\:{back}\:{sir}! \\ $$$${i}\:{still}\:{remember}\:{the}\:{discussion}\:{about} \\ $$$${the}\:{interesting}\:{question}\:\mathrm{12883}\:{from} \\ $$$${you}\:{some}\:{years}\:{ago}. \\ $$

Commented by Pengu last updated on 23/Oct/20

I′m very glad to see you remember!

$$\mathrm{I}'\mathrm{m}\:\mathrm{very}\:\mathrm{glad}\:\mathrm{to}\:\mathrm{see}\:\mathrm{you}\:\mathrm{remember}! \\ $$

Commented by prakash jain last updated on 24/Oct/20

Hi Filup, How are you?

Answered by 1549442205PVT last updated on 23/Oct/20

a)Given a_n =2a_(n−1) +2^n   Consider solution a_n =n2^n ⇒a_(n−1) =(n−1)2^(n−1)   ⇒2a_(n−1) =(n−1).2^n ⇒2a_(n−1) +2^n =n.2^n   ⇒a_n =2a_(n−1) +2^n which shows that  a_n =n2^n  is a solution of the given concurrent   relation  b)Put a_n =2^n u_n ⇒a_(n+1) =2a_n +2^(n+1)   ⇔2^(n+1) u_(n+1) =2.2^n u_n +2^(n+1)   ⇒u_(n+1) =u_n +1⇒(u_n )is a A.P. with  first term equal to u_0 =a_0  and   common difference  equal to 1.We infer  u_n =a_0 +n⇒a_n =(a_0 +n)2^n .Thus,  a_n =(n+a_0 )2^n is general term we need find  c)For a_0 =2 we get a_n =(n+2)2^n

$$\left.\mathrm{a}\right)\mathrm{Given}\:\mathrm{a}_{\mathrm{n}} =\mathrm{2a}_{\mathrm{n}−\mathrm{1}} +\mathrm{2}^{\mathrm{n}} \\ $$$$\mathrm{Consider}\:\mathrm{solution}\:\mathrm{a}_{\mathrm{n}} =\mathrm{n2}^{\mathrm{n}} \Rightarrow\mathrm{a}_{\mathrm{n}−\mathrm{1}} =\left(\mathrm{n}−\mathrm{1}\right)\mathrm{2}^{\mathrm{n}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2a}_{\mathrm{n}−\mathrm{1}} =\left(\mathrm{n}−\mathrm{1}\right).\mathrm{2}^{\mathrm{n}} \Rightarrow\mathrm{2a}_{\mathrm{n}−\mathrm{1}} +\mathrm{2}^{\mathrm{n}} =\mathrm{n}.\mathrm{2}^{\mathrm{n}} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{n}} =\mathrm{2a}_{\mathrm{n}−\mathrm{1}} +\mathrm{2}^{\mathrm{n}} \mathrm{which}\:\mathrm{shows}\:\mathrm{that} \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{n2}^{\mathrm{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{concurrent}\: \\ $$$$\mathrm{relation} \\ $$$$\left.\mathrm{b}\right)\mathrm{Put}\:\mathrm{a}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \Rightarrow\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\mathrm{2a}_{\mathrm{n}} +\mathrm{2}^{\mathrm{n}+\mathrm{1}} \\ $$$$\Leftrightarrow\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{2}.\mathrm{2}^{\mathrm{n}} \mathrm{u}_{\mathrm{n}} +\mathrm{2}^{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} +\mathrm{1}\Rightarrow\left(\mathrm{u}_{\mathrm{n}} \right)\mathrm{is}\:\mathrm{a}\:\mathrm{A}.\mathrm{P}.\:\mathrm{with} \\ $$$$\mathrm{first}\:\mathrm{term}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{u}_{\mathrm{0}} =\mathrm{a}_{\mathrm{0}} \:\mathrm{and}\: \\ $$$$\mathrm{common}\:\mathrm{difference}\:\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1}.\mathrm{We}\:\mathrm{infer} \\ $$$$\mathrm{u}_{\mathrm{n}} =\mathrm{a}_{\mathrm{0}} +\mathrm{n}\Rightarrow\mathrm{a}_{\mathrm{n}} =\left(\mathrm{a}_{\mathrm{0}} +\mathrm{n}\right)\mathrm{2}^{\mathrm{n}} .\mathrm{Thus}, \\ $$$$\mathrm{a}_{\mathrm{n}} =\left(\mathrm{n}+\mathrm{a}_{\mathrm{0}} \right)\mathrm{2}^{\mathrm{n}} \mathrm{is}\:\mathrm{general}\:\mathrm{term}\:\mathrm{we}\:\mathrm{need}\:\mathrm{find} \\ $$$$\left.\mathrm{c}\right)\mathrm{For}\:\mathrm{a}_{\mathrm{0}} =\mathrm{2}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}_{\mathrm{n}} =\left(\mathrm{n}+\mathrm{2}\right)\mathrm{2}^{\mathrm{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com