Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119303 by bobhans last updated on 23/Oct/20

 let x,y,z be positive real numbers   such that x+y+z=1. Determine   the minimum value of (1/x)+(4/y)+(9/z).

$$\:{let}\:{x},{y},{z}\:{be}\:{positive}\:{real}\:{numbers}\: \\ $$$${such}\:{that}\:{x}+{y}+{z}=\mathrm{1}.\:{Determine}\: \\ $$$${the}\:{minimum}\:{value}\:{of}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}. \\ $$

Answered by TANMAY PANACEA last updated on 23/Oct/20

(1/x)+(4/y)+(9/z)  (1^2 /x)+(2^2 /y)+(3^2 /z)≥(((1+2+3)^2 )/(x+y+z))  so minimum value=36  using Tittu lemma

$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} }{{x}}+\frac{\mathrm{2}^{\mathrm{2}} }{{y}}+\frac{\mathrm{3}^{\mathrm{2}} }{{z}}\geqslant\frac{\left(\mathrm{1}+\mathrm{2}+\mathrm{3}\right)^{\mathrm{2}} }{{x}+{y}+{z}} \\ $$$${so}\:{minimum}\:{value}=\mathrm{36} \\ $$$${using}\:{Tittu}\:{lemma} \\ $$

Answered by bobhans last updated on 24/Oct/20

by Chauchy−Schwarz inequality  (1/x)+(4/y)+(9/z) = (x+y+z)((1/x)+(4/y)+(9/z)) ≥ (1+2+3)^2 = 36  equality hold if only if (x,y,z)=((1/6),(1/3),(1/2))

$${by}\:{Chauchy}−{Schwarz}\:{inequality} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}\:=\:\left({x}+{y}+{z}\right)\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}\right)\:\geqslant\:\left(\mathrm{1}+\mathrm{2}+\mathrm{3}\right)^{\mathrm{2}} =\:\mathrm{36} \\ $$$${equality}\:{hold}\:{if}\:{only}\:{if}\:\left({x},{y},{z}\right)=\left(\frac{\mathrm{1}}{\mathrm{6}},\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Answered by 1549442205PVT last updated on 24/Oct/20

Applying the inequality  (ax+by+cz)^2 ≤(a^2 +b^2 +c^2 (x^2 +y^2 +z^2 )  we have  (1+2+3)^2 =((1/( (√x))).(√x)+(2/( (√y))).(√y)+(3/z).(√z))^2   ≤((1/x)+(4/y)+(9/z))(x+y+z)=(1/x)+(2/y)+(3/z)  ⇒(1/x)+(2/y)+(3/z)≥36.The equality ocurrs  if and only if  { (((1/x)=(2/y)=(3/z)=(6/(x+y+z))=6)),((x+y+z=1)) :}  ⇔x=(1/6),y=(1/3),z=(1/2).Thus,  ((1/x)+(2/y)+(3/z))_(min) =36 when  x=(1/6),y=(1/3),z=(1/2)

$$\mathrm{Applying}\:\mathrm{the}\:\mathrm{inequality} \\ $$$$\left(\mathrm{ax}+\mathrm{by}+\mathrm{cz}\right)^{\mathrm{2}} \leqslant\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)\right. \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\left(\mathrm{1}+\mathrm{2}+\mathrm{3}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}.\sqrt{\mathrm{x}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{y}}}.\sqrt{\mathrm{y}}+\frac{\mathrm{3}}{\mathrm{z}}.\sqrt{\mathrm{z}}\right)^{\mathrm{2}} \\ $$$$\leqslant\left(\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{4}}{\mathrm{y}}+\frac{\mathrm{9}}{\mathrm{z}}\right)\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)=\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{2}}{\mathrm{y}}+\frac{\mathrm{3}}{\mathrm{z}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{2}}{\mathrm{y}}+\frac{\mathrm{3}}{\mathrm{z}}\geqslant\mathrm{36}.\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs} \\ $$$$\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{x}}=\frac{\mathrm{2}}{\mathrm{y}}=\frac{\mathrm{3}}{\mathrm{z}}=\frac{\mathrm{6}}{\mathrm{x}+\mathrm{y}+\mathrm{z}}=\mathrm{6}}\\{\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{1}}\end{cases} \\ $$$$\Leftrightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{6}},\mathrm{y}=\frac{\mathrm{1}}{\mathrm{3}},\mathrm{z}=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{Thus}, \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{2}}{\mathrm{y}}+\frac{\mathrm{3}}{\mathrm{z}}\right)_{\mathrm{min}} =\mathrm{36}\:\mathrm{when} \\ $$$$\mathrm{x}=\frac{\mathrm{1}}{\mathrm{6}},\mathrm{y}=\frac{\mathrm{1}}{\mathrm{3}},\mathrm{z}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com