Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 119356 by Lordose last updated on 23/Oct/20

Commented by Dwaipayan Shikari last updated on 23/Oct/20

lim_(x→∞) (1/x)log((x^x /(x!)))  =(1/x).log(((x^x e^x )/(x^x .(√(2πx)))))(Stirling′s approximation lim_(n→∞) n!=((n/e))^n (√(2πn))  =(1/x)log(e^x )−(1/x)log((√(2πx)))  =1−(1/(2x))log(x)−(1/(2x))log(2π)  lim_(x→∞) =1−(1/2).((logx)/x)     (lim_(x→∞) ((logx)/x)=−((log((1/x)))/x)=−(1/x)+(1/(2x^2 ))+...=0)  =1

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}{log}\left(\frac{{x}^{{x}} }{{x}!}\right) \\ $$$$=\frac{\mathrm{1}}{{x}}.{log}\left(\frac{{x}^{{x}} {e}^{{x}} }{{x}^{{x}} .\sqrt{\mathrm{2}\pi{x}}}\right)\left({Stirling}'{s}\:{approximation}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}!=\left(\frac{{n}}{{e}}\right)^{{n}} \sqrt{\mathrm{2}\pi{n}}\right. \\ $$$$=\frac{\mathrm{1}}{{x}}{log}\left({e}^{{x}} \right)−\frac{\mathrm{1}}{{x}}{log}\left(\sqrt{\mathrm{2}\pi{x}}\right) \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}{log}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}{x}}{log}\left(\mathrm{2}\pi\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}.\frac{{logx}}{{x}}\:\:\:\:\:\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{logx}}{{x}}=−\frac{{log}\left(\frac{\mathrm{1}}{{x}}\right)}{{x}}=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+...=\mathrm{0}\right) \\ $$$$=\mathrm{1} \\ $$

Commented by Lordose last updated on 23/Oct/20

Very nice sir

$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{sir} \\ $$

Answered by mathmax by abdo last updated on 23/Oct/20

we have x! ∼ x^x e^(−x) (√(2πx))⇒(x^x /(x!)) ∼(e^x /(√(2πx))) ⇒  ((ln((x^x /(x!))))/x)∼ ((ln((e^x /(√(2πx)))))/x) =((x−ln((√(2πx))))/x) =1−((ln(2πx))/(2x)) →1 ⇒  lim_(x→+∞)  ((ln((x^x /(x!))))/x) =1  ⇒

$$\mathrm{we}\:\mathrm{have}\:\mathrm{x}!\:\sim\:\mathrm{x}^{\mathrm{x}} \mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}\Rightarrow\frac{\mathrm{x}^{\mathrm{x}} }{\mathrm{x}!}\:\sim\frac{\mathrm{e}^{\mathrm{x}} }{\sqrt{\mathrm{2}\pi\mathrm{x}}}\:\Rightarrow \\ $$$$\frac{\mathrm{ln}\left(\frac{\mathrm{x}^{\mathrm{x}} }{\mathrm{x}!}\right)}{\mathrm{x}}\sim\:\frac{\mathrm{ln}\left(\frac{\mathrm{e}^{\mathrm{x}} }{\sqrt{\mathrm{2}\pi\mathrm{x}}}\right)}{\mathrm{x}}\:=\frac{\mathrm{x}−\mathrm{ln}\left(\sqrt{\mathrm{2}\pi\mathrm{x}}\right)}{\mathrm{x}}\:=\mathrm{1}−\frac{\mathrm{ln}\left(\mathrm{2}\pi\mathrm{x}\right)}{\mathrm{2x}}\:\rightarrow\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\frac{\mathrm{ln}\left(\frac{\mathrm{x}^{\mathrm{x}} }{\mathrm{x}!}\right)}{\mathrm{x}}\:=\mathrm{1} \\ $$$$\Rightarrow \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com