Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 119373 by bobhans last updated on 24/Oct/20

Find all sum of all x interval  [ 0, 2π ] such that 3cot^2 x + 8 cot x + 3 = 0

$${Find}\:{all}\:{sum}\:{of}\:{all}\:{x}\:{interval} \\ $$$$\left[\:\mathrm{0},\:\mathrm{2}\pi\:\right]\:{such}\:{that}\:\mathrm{3cot}\:^{\mathrm{2}} {x}\:+\:\mathrm{8}\:\mathrm{cot}\:{x}\:+\:\mathrm{3}\:=\:\mathrm{0} \\ $$

Commented by benjo_mathlover last updated on 24/Oct/20

consider the quadratic equation  3q^2 +8q+3 = 0 , with the roots are q_1 =((−8+2(√7))/6)  and q_2 =((−8−2(√7))/6). both roots are real and  their product equal to −1. Because y =cot x is a bijection  from the interval (0,π) to the real number , there  is a unique pair of numbers x_(1.1)  and x_(2.1)   with 0<x_(1.1) ,x_(2.1) <π such that cot x_(1.1) =q_1   and cot x_(2.1) =q_2 . Because q_1 and q_2  are  negative , (π/2)<x_(1.1)  ,x_(2.1)  < π and so   π<x_(1.1)  ,x_(2.1)  < 2π . Since tan x cot x=1  both tan x and cot x have period π, it follows that  1=tan x cot x=cot x cot ((π/2)−x)=cot x cot (((3π)/2)−x)  1= cot x_(1.1) . cot x_(2.1)  then x_(1.1) +x_(2.1) =((3π)/2)  likewise in interval (π,2π) there is unique  pair number x_(1.2) and x_(2.2)  satisfying the  conditions of the problem with x_(1.2) +x_(2.2) =((7π)/2)  Therefore x_(1.1) +x_(2.1) +x_(1.2) +x_(2.2) = ((3π)/2)+((7π)/2)=5π

$${consider}\:{the}\:{quadratic}\:{equation} \\ $$$$\mathrm{3}{q}^{\mathrm{2}} +\mathrm{8}{q}+\mathrm{3}\:=\:\mathrm{0}\:,\:{with}\:{the}\:{roots}\:{are}\:{q}_{\mathrm{1}} =\frac{−\mathrm{8}+\mathrm{2}\sqrt{\mathrm{7}}}{\mathrm{6}} \\ $$$${and}\:{q}_{\mathrm{2}} =\frac{−\mathrm{8}−\mathrm{2}\sqrt{\mathrm{7}}}{\mathrm{6}}.\:{both}\:{roots}\:{are}\:{real}\:{and} \\ $$$${their}\:{product}\:{equal}\:{to}\:−\mathrm{1}.\:{Because}\:{y}\:=\mathrm{cot}\:{x}\:{is}\:{a}\:{bijection} \\ $$$${from}\:{the}\:{interval}\:\left(\mathrm{0},\pi\right)\:{to}\:{the}\:{real}\:{number}\:,\:{there} \\ $$$${is}\:{a}\:{unique}\:{pair}\:{of}\:{numbers}\:{x}_{\mathrm{1}.\mathrm{1}} \:{and}\:{x}_{\mathrm{2}.\mathrm{1}} \\ $$$${with}\:\mathrm{0}<{x}_{\mathrm{1}.\mathrm{1}} ,{x}_{\mathrm{2}.\mathrm{1}} <\pi\:{such}\:{that}\:\mathrm{cot}\:{x}_{\mathrm{1}.\mathrm{1}} ={q}_{\mathrm{1}} \\ $$$${and}\:\mathrm{cot}\:{x}_{\mathrm{2}.\mathrm{1}} ={q}_{\mathrm{2}} .\:{Because}\:{q}_{\mathrm{1}} {and}\:{q}_{\mathrm{2}} \:{are} \\ $$$${negative}\:,\:\frac{\pi}{\mathrm{2}}<{x}_{\mathrm{1}.\mathrm{1}} \:,{x}_{\mathrm{2}.\mathrm{1}} \:<\:\pi\:{and}\:{so}\: \\ $$$$\pi<{x}_{\mathrm{1}.\mathrm{1}} \:,{x}_{\mathrm{2}.\mathrm{1}} \:<\:\mathrm{2}\pi\:.\:{Since}\:\mathrm{tan}\:{x}\:\mathrm{cot}\:{x}=\mathrm{1} \\ $$$${both}\:\mathrm{tan}\:{x}\:{and}\:\mathrm{cot}\:{x}\:{have}\:{period}\:\pi,\:{it}\:{follows}\:{that} \\ $$$$\mathrm{1}=\mathrm{tan}\:{x}\:\mathrm{cot}\:{x}=\mathrm{cot}\:{x}\:\mathrm{cot}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)=\mathrm{cot}\:{x}\:\mathrm{cot}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}−{x}\right) \\ $$$$\mathrm{1}=\:\mathrm{cot}\:{x}_{\mathrm{1}.\mathrm{1}} .\:\mathrm{cot}\:{x}_{\mathrm{2}.\mathrm{1}} \:{then}\:{x}_{\mathrm{1}.\mathrm{1}} +{x}_{\mathrm{2}.\mathrm{1}} =\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$${likewise}\:{in}\:{interval}\:\left(\pi,\mathrm{2}\pi\right)\:{there}\:{is}\:{unique} \\ $$$${pair}\:{number}\:{x}_{\mathrm{1}.\mathrm{2}} {and}\:{x}_{\mathrm{2}.\mathrm{2}} \:{satisfying}\:{the} \\ $$$${conditions}\:{of}\:{the}\:{problem}\:{with}\:{x}_{\mathrm{1}.\mathrm{2}} +{x}_{\mathrm{2}.\mathrm{2}} =\frac{\mathrm{7}\pi}{\mathrm{2}} \\ $$$${Therefore}\:{x}_{\mathrm{1}.\mathrm{1}} +{x}_{\mathrm{2}.\mathrm{1}} +{x}_{\mathrm{1}.\mathrm{2}} +{x}_{\mathrm{2}.\mathrm{2}} =\:\frac{\mathrm{3}\pi}{\mathrm{2}}+\frac{\mathrm{7}\pi}{\mathrm{2}}=\mathrm{5}\pi \\ $$

Answered by TANMAY PANACEA last updated on 24/Oct/20

tanx=a  (3/a^2 )+(8/a)+3=0  3+8a+3a^2 =0  a=((−8±(√(8^2 −4×3×3)))/(2×3))=((−8±2(√7))/(2×3))=((−4±(√7))/3)  tanx_1 =((−4+(√7))/3) =tanα       tanx_2 =((−4−(√7))/3)=tanβ  tan(α+β)=((tanα+tanβ)/(1−tanαtanβ))=(((−8)/3)/(1−(((16−7)/9))))=tan(π/2)  (α+β)=(π/2)  tan(α+β)=tan(π/2)=tan(π+(π/2))=tan((3π)/2)  tanα=tan(π+α)  tanβ=tan(π+β)  α+(α+π)+β+(β+π)+(α+β)+(π+α+β)  =4(α+β)+3π  =4((π/2))+3π=5π

$${tanx}={a} \\ $$$$\frac{\mathrm{3}}{{a}^{\mathrm{2}} }+\frac{\mathrm{8}}{{a}}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{3}+\mathrm{8}{a}+\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${a}=\frac{−\mathrm{8}\pm\sqrt{\mathrm{8}^{\mathrm{2}} −\mathrm{4}×\mathrm{3}×\mathrm{3}}}{\mathrm{2}×\mathrm{3}}=\frac{−\mathrm{8}\pm\mathrm{2}\sqrt{\mathrm{7}}}{\mathrm{2}×\mathrm{3}}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$${tanx}_{\mathrm{1}} =\frac{−\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\:={tan}\alpha\:\:\:\:\:\:\:{tanx}_{\mathrm{2}} =\frac{−\mathrm{4}−\sqrt{\mathrm{7}}}{\mathrm{3}}={tan}\beta \\ $$$${tan}\left(\alpha+\beta\right)=\frac{{tan}\alpha+{tan}\beta}{\mathrm{1}−{tan}\alpha{tan}\beta}=\frac{\frac{−\mathrm{8}}{\mathrm{3}}}{\mathrm{1}−\left(\frac{\mathrm{16}−\mathrm{7}}{\mathrm{9}}\right)}={tan}\frac{\pi}{\mathrm{2}} \\ $$$$\left(\alpha+\beta\right)=\frac{\pi}{\mathrm{2}} \\ $$$${tan}\left(\alpha+\beta\right)={tan}\frac{\pi}{\mathrm{2}}={tan}\left(\pi+\frac{\pi}{\mathrm{2}}\right)={tan}\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$${tan}\alpha={tan}\left(\pi+\alpha\right) \\ $$$${tan}\beta={tan}\left(\pi+\beta\right) \\ $$$$\alpha+\left(\alpha+\pi\right)+\beta+\left(\beta+\pi\right)+\left(\alpha+\beta\right)+\left(\pi+\alpha+\beta\right) \\ $$$$=\mathrm{4}\left(\alpha+\beta\right)+\mathrm{3}\pi \\ $$$$=\mathrm{4}\left(\frac{\pi}{\mathrm{2}}\right)+\mathrm{3}\pi=\mathrm{5}\pi \\ $$$$ \\ $$

Commented by 1549442205PVT last updated on 24/Oct/20

Sir mistake at place (√(8^2 −4×3×3))  =(√(28))=2(√7)

$$\mathrm{Sir}\:\mathrm{mistake}\:\mathrm{at}\:\mathrm{place}\:\sqrt{\mathrm{8}^{\mathrm{2}} −\mathrm{4}×\mathrm{3}×\mathrm{3}} \\ $$$$=\sqrt{\mathrm{28}}=\mathrm{2}\sqrt{\mathrm{7}} \\ $$

Commented by TANMAY PANACEA last updated on 24/Oct/20

yes sir corrected

$${yes}\:{sir}\:{corrected} \\ $$

Answered by MJS_new last updated on 24/Oct/20

3cot^2  x +8cot x +3=0  ((3cos^2  x)/(sin^2  x))+((8cos x)/(sin x))+3=0  ((3cos^2 +8cos x sin x +3sin^2  x)/(sin^2  x))=0  3+8cos x sin x =0  cos x sin x =−(3/8)  (1/2)sin 2x =−(3/8)  sin 2x =−(3/4)  x=nπ−(1/2)arcsin (3/4) ∨ x=nπ+(π/2)+(1/2)arcsin (3/4)  let α=(1/2)arcsin (3/4)  for 0≤x<2π we get  x=π−α∨x=2π−α∨x=(π/2)+α∨x=((3π)/2)+α  ⇒ sum of these is 5π

$$\mathrm{3cot}^{\mathrm{2}} \:{x}\:+\mathrm{8cot}\:{x}\:+\mathrm{3}=\mathrm{0} \\ $$$$\frac{\mathrm{3cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}+\frac{\mathrm{8cos}\:{x}}{\mathrm{sin}\:{x}}+\mathrm{3}=\mathrm{0} \\ $$$$\frac{\mathrm{3cos}^{\mathrm{2}} +\mathrm{8cos}\:{x}\:\mathrm{sin}\:{x}\:+\mathrm{3sin}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}=\mathrm{0} \\ $$$$\mathrm{3}+\mathrm{8cos}\:{x}\:\mathrm{sin}\:{x}\:=\mathrm{0} \\ $$$$\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}\:=−\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:=−\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\mathrm{sin}\:\mathrm{2}{x}\:=−\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${x}={n}\pi−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:\frac{\mathrm{3}}{\mathrm{4}}\:\vee\:{x}={n}\pi+\frac{\pi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{let}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arcsin}\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:\mathrm{we}\:\mathrm{get} \\ $$$${x}=\pi−\alpha\vee{x}=\mathrm{2}\pi−\alpha\vee{x}=\frac{\pi}{\mathrm{2}}+\alpha\vee{x}=\frac{\mathrm{3}\pi}{\mathrm{2}}+\alpha \\ $$$$\Rightarrow\:\mathrm{sum}\:\mathrm{of}\:\mathrm{these}\:\mathrm{is}\:\mathrm{5}\pi \\ $$

Answered by 1549442205PVT last updated on 24/Oct/20

3cot^2 x + 8 cot x + 3 = 0  Δ′=4^2 −9=7⇒cotx=((−4±(√7))/3)  ⇒tanx=(3/(−4±(√7)))=((3(−4∓(√7)))/9)=((−4∓(√7))/3)  Put α=tan^(−1) (((−4+(√7))/3)),β=tan^(−1) (((−4−(√7))/3))  α≈−24°17′42”,β≈−65°42′17”  Since α,β∈[0,2π] and tanx=tan(x+kπ)  we get α∈{155°42′17”,335°42′17”}  β∈{114°17′43”,294°17′43”}  ⇒α_1 +α_2 +β_1 +β_2 =900°  Thus,Sum of all the angles satisfying  given equation equal to 900°

$$\mathrm{3cot}\:^{\mathrm{2}} {x}\:+\:\mathrm{8}\:\mathrm{cot}\:{x}\:+\:\mathrm{3}\:=\:\mathrm{0} \\ $$$$\Delta'=\mathrm{4}^{\mathrm{2}} −\mathrm{9}=\mathrm{7}\Rightarrow\mathrm{cotx}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{tanx}=\frac{\mathrm{3}}{−\mathrm{4}\pm\sqrt{\mathrm{7}}}=\frac{\mathrm{3}\left(−\mathrm{4}\mp\sqrt{\mathrm{7}}\right)}{\mathrm{9}}=\frac{−\mathrm{4}\mp\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$$\mathrm{Put}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\frac{−\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\right),\beta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{−\mathrm{4}−\sqrt{\mathrm{7}}}{\mathrm{3}}\right) \\ $$$$\alpha\approx−\mathrm{24}°\mathrm{17}'\mathrm{42}'',\beta\approx−\mathrm{65}°\mathrm{42}'\mathrm{17}'' \\ $$$$\mathrm{Since}\:\alpha,\beta\in\left[\mathrm{0},\mathrm{2}\pi\right]\:\mathrm{and}\:\mathrm{tanx}=\mathrm{tan}\left(\mathrm{x}+\mathrm{k}\pi\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\alpha\in\left\{\mathrm{155}°\mathrm{42}'\mathrm{17}'',\mathrm{335}°\mathrm{42}'\mathrm{17}''\right\} \\ $$$$\beta\in\left\{\mathrm{114}°\mathrm{17}'\mathrm{43}'',\mathrm{294}°\mathrm{17}'\mathrm{43}''\right\} \\ $$$$\Rightarrow\alpha_{\mathrm{1}} +\alpha_{\mathrm{2}} +\beta_{\mathrm{1}} +\beta_{\mathrm{2}} =\mathrm{900}° \\ $$$$\mathrm{Thus},\mathrm{Sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{satisfying} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{900}° \\ $$

Answered by Bird last updated on 24/Oct/20

3cotan^2 x+8cotanx +3=0 ⇒  (3/(tan^2 x)) +(8/(tanx)) +3 =0 ⇒  3+8tanx +3tan^2 x =0 ⇒  3tan^2 x+8tanx +3 =0  tanx=u ⇒3u^2 +8u+3=0  Δ^′  =4^2 −9 =16−9 =7 ⇒  u_1 =((−4+(√7))/3) and u_2 =((−4−(√7))/3)  tanx=((−4+(√7))/3) ⇒x=arctan(((−4+(√7))/3))+nπ  tanx=((−4−(√7))/3) ⇒x=−arctan(((4+(√7))/3))+nπ  (n∈Z)

$$\mathrm{3}{cotan}^{\mathrm{2}} {x}+\mathrm{8}{cotanx}\:+\mathrm{3}=\mathrm{0}\:\Rightarrow \\ $$$$\frac{\mathrm{3}}{{tan}^{\mathrm{2}} {x}}\:+\frac{\mathrm{8}}{{tanx}}\:+\mathrm{3}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{3}+\mathrm{8}{tanx}\:+\mathrm{3}{tan}^{\mathrm{2}} {x}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{3}{tan}^{\mathrm{2}} {x}+\mathrm{8}{tanx}\:+\mathrm{3}\:=\mathrm{0} \\ $$$${tanx}={u}\:\Rightarrow\mathrm{3}{u}^{\mathrm{2}} +\mathrm{8}{u}+\mathrm{3}=\mathrm{0} \\ $$$$\Delta^{'} \:=\mathrm{4}^{\mathrm{2}} −\mathrm{9}\:=\mathrm{16}−\mathrm{9}\:=\mathrm{7}\:\Rightarrow \\ $$$${u}_{\mathrm{1}} =\frac{−\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\:{and}\:{u}_{\mathrm{2}} =\frac{−\mathrm{4}−\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$${tanx}=\frac{−\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\:\Rightarrow{x}={arctan}\left(\frac{−\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\right)+{n}\pi \\ $$$${tanx}=\frac{−\mathrm{4}−\sqrt{\mathrm{7}}}{\mathrm{3}}\:\Rightarrow{x}=−{arctan}\left(\frac{\mathrm{4}+\sqrt{\mathrm{7}}}{\mathrm{3}}\right)+{n}\pi \\ $$$$\left({n}\in{Z}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com