Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 119421 by bemath last updated on 24/Oct/20

find the value of Π_(i=1) ^(999)  cos (ia) ; where a = ((2π)/(1999))

$${find}\:{the}\:{value}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{999}} {\prod}}\:\mathrm{cos}\:\left({ia}\right)\:;\:{where}\:{a}\:=\:\frac{\mathrm{2}\pi}{\mathrm{1999}} \\ $$

Commented by MJS_new last updated on 24/Oct/20

study P_n =Π_(j=1) ^n cos ((2πj)/(2n+1)) to find the answer  it′s easier than it seems

$$\mathrm{study}\:{P}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\:\frac{\mathrm{2}\pi{j}}{\mathrm{2}{n}+\mathrm{1}}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{answer} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easier}\:\mathrm{than}\:\mathrm{it}\:\mathrm{seems} \\ $$

Answered by benjo_mathlover last updated on 24/Oct/20

Let B denote the desired product, and let  J = sin a sin 2a sin 3a... sin 999a  consider that   2^(999)  BJ = (2sin a cos a)(2sin 2acos 2a)(2sin 3acos 3a)...(2sin 999a cos 999a)                    = sin 2a sin 4a sin 6a ... sin 1998a         = (sin 2asin 4asin 6a...sin 998a)(−sin (2π−1000a)).(−sin (2π−10002a))...(−sin (2π−1998a))         = sin 2asin 4asin 6a...sin 998asin 999asin 997a...sin a = J  since J ≠ 0 , hence the desired product  is B = (1/2^(999) )

$${Let}\:{B}\:{denote}\:{the}\:{desired}\:{product},\:{and}\:{let} \\ $$$${J}\:=\:\mathrm{sin}\:{a}\:\mathrm{sin}\:\mathrm{2}{a}\:\mathrm{sin}\:\mathrm{3}{a}...\:\mathrm{sin}\:\mathrm{999}{a} \\ $$$${consider}\:{that}\: \\ $$$$\mathrm{2}^{\mathrm{999}} \:{BJ}\:=\:\left(\mathrm{2sin}\:{a}\:\mathrm{cos}\:{a}\right)\left(\mathrm{2sin}\:\mathrm{2}{a}\mathrm{cos}\:\mathrm{2}{a}\right)\left(\mathrm{2sin}\:\mathrm{3}{a}\mathrm{cos}\:\mathrm{3}{a}\right)...\left(\mathrm{2sin}\:\mathrm{999}{a}\:\mathrm{cos}\:\mathrm{999}{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{sin}\:\mathrm{2}{a}\:\mathrm{sin}\:\mathrm{4}{a}\:\mathrm{sin}\:\mathrm{6}{a}\:...\:\mathrm{sin}\:\mathrm{1998}{a} \\ $$$$\:\:\:\:\:\:\:=\:\left(\mathrm{sin}\:\mathrm{2}{a}\mathrm{sin}\:\mathrm{4}{a}\mathrm{sin}\:\mathrm{6}{a}...\mathrm{sin}\:\mathrm{998}{a}\right)\left(−\mathrm{sin}\:\left(\mathrm{2}\pi−\mathrm{1000}{a}\right)\right).\left(−\mathrm{sin}\:\left(\mathrm{2}\pi−\mathrm{10002}{a}\right)\right)...\left(−\mathrm{sin}\:\left(\mathrm{2}\pi−\mathrm{1998}{a}\right)\right) \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{sin}\:\mathrm{2}{a}\mathrm{sin}\:\mathrm{4}{a}\mathrm{sin}\:\mathrm{6}{a}...\mathrm{sin}\:\mathrm{998}{a}\mathrm{sin}\:\mathrm{999}{a}\mathrm{sin}\:\mathrm{997}{a}...\mathrm{sin}\:{a}\:=\:{J} \\ $$$${since}\:{J}\:\neq\:\mathrm{0}\:,\:{hence}\:{the}\:{desired}\:{product} \\ $$$${is}\:{B}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{999}} }\: \\ $$

Answered by mindispower last updated on 24/Oct/20

Π_(i=1) ^m cos(i((2π)/(2m+1)))  Z^(2m+1) −1=0⇒Z=e^((2ikπ)/(2m+1)) ,k∈[0,2m]  z^(2m+1) −1=Π_(k≤2m) (z−e^((2ikπ)/(2m+1)) )  z=−1⇒  −2=Π_(k=0) ^(2m) (−1−e^((2ikπ)/(2m+1)) )=−1e^(i(π/(2m+1)).((2m(2m+1))/2)) .Π_(k≤2m) (2cos(((kπ)/(2m+1)))  =(−1)^(m+1) 2^(2m+1) Π_(k≤2m) cos(((kπ)/(2m+1)))  Π_(k≤2m) cos(((kπ)/(2m+1)))=Π_(k≤m) cos(((kπ)/(2m+1))).Π_(m<k≤2m) (−cos(π−((kπ)/(2m+1))))  put k→2m+1−k in2nd ⇒  =Π_(1≤k≤m) cos(((kπ)/(2m+1))).(−1)^m .Π_(k≤m) cos(((π(2m+1)−(2m+1−k)π)/(2m+1))  =(−1)^m (Π_(k=1) ^m cos(((kπ)/(2m+1))))^2   ⇒−2=(−1)^(m+1) .2^(2m+1) .(−1)^m .(Π_(k≤m) cos(((kπ)/(2m+1))))^2   ⇒(1/2^(2m) )=Π_(k≤m) cos^2 (((kπ)/(2m+1)))  since0<((kπ)/(2m+1))<((mπ)/(2m))=(π/2)  ⇒Π_(k≤m) cos(((kπ)/(2m+1)))=(1/2^m )  put m=999⇒Π_(k≤999) cos(((kπ)/(1999)))=(1/2^(999) )

$$\underset{{i}=\mathrm{1}} {\overset{{m}} {\prod}}{cos}\left({i}\frac{\mathrm{2}\pi}{\mathrm{2}{m}+\mathrm{1}}\right) \\ $$$${Z}^{\mathrm{2}{m}+\mathrm{1}} −\mathrm{1}=\mathrm{0}\Rightarrow{Z}={e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{2}{m}+\mathrm{1}}} ,{k}\in\left[\mathrm{0},\mathrm{2}{m}\right] \\ $$$${z}^{\mathrm{2}{m}+\mathrm{1}} −\mathrm{1}=\underset{{k}\leqslant\mathrm{2}{m}} {\prod}\left({z}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{2}{m}+\mathrm{1}}} \right) \\ $$$${z}=−\mathrm{1}\Rightarrow \\ $$$$−\mathrm{2}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{m}} {\prod}}\left(−\mathrm{1}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{2}{m}+\mathrm{1}}} \right)=−\mathrm{1}{e}^{{i}\frac{\pi}{\mathrm{2}{m}+\mathrm{1}}.\frac{\mathrm{2}{m}\left(\mathrm{2}{m}+\mathrm{1}\right)}{\mathrm{2}}} .\underset{{k}\leqslant\mathrm{2}{m}} {\prod}\left(\mathrm{2}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)\right. \\ $$$$=\left(−\mathrm{1}\right)^{{m}+\mathrm{1}} \mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} \underset{{k}\leqslant\mathrm{2}{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right) \\ $$$$\underset{{k}\leqslant\mathrm{2}{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)=\underset{{k}\leqslant{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right).\underset{{m}<{k}\leqslant\mathrm{2}{m}} {\prod}\left(−{cos}\left(\pi−\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)\right) \\ $$$${put}\:{k}\rightarrow\mathrm{2}{m}+\mathrm{1}−{k}\:{in}\mathrm{2}{nd}\:\Rightarrow \\ $$$$=\underset{\mathrm{1}\leqslant{k}\leqslant{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right).\left(−\mathrm{1}\right)^{{m}} .\underset{{k}\leqslant{m}} {\prod}{cos}\left(\frac{\pi\left(\mathrm{2}{m}+\mathrm{1}\right)−\left(\mathrm{2}{m}+\mathrm{1}−{k}\right)\pi}{\mathrm{2}{m}+\mathrm{1}}\right. \\ $$$$=\left(−\mathrm{1}\right)^{{m}} \left(\underset{{k}=\mathrm{1}} {\overset{{m}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)\right)^{\mathrm{2}} \\ $$$$\Rightarrow−\mathrm{2}=\left(−\mathrm{1}\right)^{{m}+\mathrm{1}} .\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} .\left(−\mathrm{1}\right)^{{m}} .\left(\underset{{k}\leqslant{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{m}} }=\underset{{k}\leqslant{m}} {\prod}{cos}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right) \\ $$$${since}\mathrm{0}<\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}<\frac{{m}\pi}{\mathrm{2}{m}}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\underset{{k}\leqslant{m}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{2}{m}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}^{{m}} } \\ $$$${put}\:{m}=\mathrm{999}\Rightarrow\underset{{k}\leqslant\mathrm{999}} {\prod}{cos}\left(\frac{{k}\pi}{\mathrm{1999}}\right)=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{999}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com