Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119442 by mnjuly1970 last updated on 24/Oct/20

        ... advanced  calculus...        prove  that : Σ_(n=1) ^∞ (1/(n^2  (((2n)),(n) ))) =^(???) ((ζ(2))/3)  solution::  Σ_(n=1) ^∞ (1/(n^2 ∗(((2n)!)/((n!)^2 ))))=Σ_(n=1) ^∞ ((n!∗n!)/(n^2 ∗(2n)!))        =Σ_(n=1) ^∞  ((Γ(n)Γ(n+1))/(nΓ(2n+1)))=Σ_(n=1) ^∞ ((β(n,n+1))/n)  =Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) x^(n−1) (1−x)^n   =∫_0 ^( 1) (1/x)Σ(((x−x^2 )^n )/n)dx  =−∫_0 ^( 1) ((ln(1−x+x^2 ))/x)dx    =−∫_0 ^( 1) ((ln(1+x^3 )−ln(1+x))/x)dx    =∫_0 ^( 1) ((ln(1+x))/x)dx −∫_0 ^( 1) ((ln(1+x^3 ))/x)dx   =−li_2 (−1) −∫_0 ^( 1) ((Σ_(n=1) (((−1)^(n+1) x^(3n) )/n))/x) dx  =(π^2 /(12))+Σ_(n=1) ^∞ (((−1)^n )/n)∫_0 ^( 1) x^(3n−1) dx          =(π^2 /(12)) +(1/3)Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(12))−(π^2 /(36))  =(π^2 /(18)) =((ζ(2))/3)  ✓✓          m.n.july.1970..

...advancedcalculus...provethat:n=11n2(2nn)=???ζ(2)3solution::n=11n2(2n)!(n!)2=n=1n!n!n2(2n)!=n=1Γ(n)Γ(n+1)nΓ(2n+1)=n=1β(n,n+1)n=n=11n01xn1(1x)n=011xΣ(xx2)nndx=01ln(1x+x2)xdx=01ln(1+x3)ln(1+x)xdx=01ln(1+x)xdx01ln(1+x3)xdx=li2(1)01n=1(1)n+1x3nnxdx=π212+n=1(1)nn01x3n1dx=π212+13n=1(1)nn2=π212π236=π218=ζ(2)3m.n.july.1970..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com