Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 119472 by Engr_Jidda last updated on 24/Oct/20

Answered by Sach last updated on 24/Oct/20

 { ((y′′+xy′−y=x^2 +1)),((y(0)=1)),((y′(0)=2)) :}  1^(rst) step: let′s supose there is such a solution and that it is a serie  (sorry for the spelling I′m french so I hope you understand what I wright and that I did not misunderstand your question  let′s call (a_k )_(k∈N) ∈C^N  such that ∃r∈R_+ ^∗ /∀x∈[0,r[ y(x)=Σ_(k=0) ^(+∞) a_k x^k   obviously a_0 =y(0)=1 and a_1 =y′(0)=2    then since y′′+xy′−y=x^2 +1  Σ_(k=2) ^(+∞) k(k−1)a_k x^(k−2) +xΣ_(k=0) ^(+∞) ka_k x^(k−1) −Σ_(k=0) ^(+∞) a_k x^k =1x^0 +0×x^1 +1×x^2 +Σ_(k=3) ^(+∞) 0x^k   that is to sayΣ_(k=0) ^(+∞) (k+2)(k+1)a_(k+2) x^k +Σ_(k=0) ^(+∞) (k−1)a_k x^k =1x^0 +0×x^1 +1×x^2 +Σ_(k=3) ^(+∞) 0x^k   therefore { ((2a_2 −a_0 =1)),((3×2a_3 =0)),((4×3a_4 +a_2 =1)),((∀k∈[∣3,+∞[∣ (k+2)(k+1)a_(k+2) +(k−1)a_k =0)) :}  i.e.  { (((a_0 ,a_1 ,a_2 ,a_3 ,a_4 )=(1,2,1,0,(1/6)))),((∀k≤3_(k∈N of course)  a_(k+2) =((1−k)/((k+2)(k+1)))a_k )) :}  we have thereby found the only serie that could possibly work    2^(nd) step: verifiing that it is a solution  if the function f:  { ((X_1 ⊂C→X_2 ⊂C)),((x→Σ_(k=0) ^(+∞) a_k x^k )) :}is defined it is obviously a solution  so w just need to prove that there are X_1  and X_2  such that it is

$$\begin{cases}{{y}''+{xy}'−{y}={x}^{\mathrm{2}} +\mathrm{1}}\\{{y}\left(\mathrm{0}\right)=\mathrm{1}}\\{{y}'\left(\mathrm{0}\right)=\mathrm{2}}\end{cases} \\ $$$$\mathrm{1}^{\mathrm{rst}} \mathrm{step}:\:{let}'{s}\:{supose}\:{there}\:{is}\:{such}\:{a}\:{solution}\:{and}\:{that}\:{it}\:{is}\:{a}\:{serie} \\ $$$$\left({sorry}\:{for}\:{the}\:{spelling}\:{I}'{m}\:{french}\:{so}\:{I}\:{hope}\:{you}\:{understand}\:{what}\:{I}\:{wright}\:{and}\:{that}\:{I}\:{did}\:{not}\:{misunderstand}\:{your}\:{question}\right. \\ $$$${let}'{s}\:{call}\:\left({a}_{{k}} \right)_{{k}\in\mathbb{N}} \in\mathbb{C}^{\mathbb{N}} \:{such}\:{that}\:\exists{r}\in\mathbb{R}_{+} ^{\ast} /\forall{x}\in\left[\mathrm{0},{r}\left[\:{y}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{k}} {x}^{{k}} \right.\right. \\ $$$${obviously}\:{a}_{\mathrm{0}} ={y}\left(\mathrm{0}\right)=\mathrm{1}\:{and}\:{a}_{\mathrm{1}} ={y}'\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$ \\ $$$${then}\:{since}\:{y}''+{xy}'−{y}={x}^{\mathrm{2}} +\mathrm{1} \\ $$$$\underset{{k}=\mathrm{2}} {\overset{+\infty} {\sum}}{k}\left({k}−\mathrm{1}\right){a}_{{k}} {x}^{{k}−\mathrm{2}} +{x}\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}{ka}_{{k}} {x}^{{k}−\mathrm{1}} −\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{k}} {x}^{{k}} =\mathrm{1}{x}^{\mathrm{0}} +\mathrm{0}×{x}^{\mathrm{1}} +\mathrm{1}×{x}^{\mathrm{2}} +\underset{{k}=\mathrm{3}} {\overset{+\infty} {\sum}}\mathrm{0}{x}^{{k}} \\ $$$${that}\:{is}\:{to}\:{say}\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right){a}_{{k}+\mathrm{2}} {x}^{{k}} +\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\left({k}−\mathrm{1}\right){a}_{{k}} {x}^{{k}} =\mathrm{1}{x}^{\mathrm{0}} +\mathrm{0}×{x}^{\mathrm{1}} +\mathrm{1}×{x}^{\mathrm{2}} +\underset{{k}=\mathrm{3}} {\overset{+\infty} {\sum}}\mathrm{0}{x}^{{k}} \\ $$$${therefore\begin{cases}{\mathrm{2}{a}_{\mathrm{2}} −{a}_{\mathrm{0}} =\mathrm{1}}\\{\mathrm{3}×\mathrm{2}{a}_{\mathrm{3}} =\mathrm{0}}\\{\mathrm{4}×\mathrm{3}{a}_{\mathrm{4}} +{a}_{\mathrm{2}} =\mathrm{1}}\\{\forall{k}\in\left[\mid\mathrm{3},+\infty\left[\mid\:\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right){a}_{{k}+\mathrm{2}} +\left({k}−\mathrm{1}\right){a}_{{k}} =\mathrm{0}\right.\right.}\end{cases}} \\ $$$${i}.{e}.\:\begin{cases}{\left({a}_{\mathrm{0}} ,{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,{a}_{\mathrm{4}} \right)=\left(\mathrm{1},\mathrm{2},\mathrm{1},\mathrm{0},\frac{\mathrm{1}}{\mathrm{6}}\right)}\\{\forall{k}\leqslant\mathrm{3}_{{k}\in\mathbb{N}\:{of}\:{course}} \:{a}_{{k}+\mathrm{2}} =\frac{\mathrm{1}−{k}}{\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)}{a}_{{k}} }\end{cases} \\ $$$${we}\:{have}\:{thereby}\:{found}\:{the}\:{only}\:{serie}\:{that}\:{could}\:{possibly}\:{work} \\ $$$$ \\ $$$$\mathrm{2}^{{nd}} {step}:\:{verifiing}\:{that}\:{it}\:{is}\:{a}\:{solution} \\ $$$${if}\:{the}\:{function}\:{f}:\:\begin{cases}{\mathrm{X}_{\mathrm{1}} \subset\mathbb{C}\rightarrow\mathrm{X}_{\mathrm{2}} \subset\mathbb{C}}\\{{x}\rightarrow\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{k}} {x}^{{k}} }\end{cases}{is}\:{defined}\:{it}\:{is}\:{obviously}\:{a}\:{solution} \\ $$$${so}\:{w}\:{just}\:{need}\:{to}\:{prove}\:{that}\:{there}\:{are}\:\mathrm{X}_{\mathrm{1}} \:{and}\:\mathrm{X}_{\mathrm{2}} \:{such}\:{that}\:{it}\:{is} \\ $$$$ \\ $$$$ \\ $$

Commented by Sach last updated on 24/Oct/20

it is quite obvious that (a_(2k) ) and (a_(2k+1) ) are of alternating signs and both decrease towards 0  therefor we get the result we wanted!  (sorry that I sent the answer without that last bit  I hope you could understand me and that I solved your problem)

$${it}\:{is}\:{quite}\:{obvious}\:{that}\:\left({a}_{\mathrm{2}{k}} \right)\:{and}\:\left({a}_{\mathrm{2}{k}+\mathrm{1}} \right)\:{are}\:{of}\:{alternating}\:{signs}\:{and}\:{both}\:{decrease}\:{towards}\:\mathrm{0} \\ $$$${therefor}\:{we}\:{get}\:{the}\:{result}\:{we}\:{wanted}! \\ $$$$\left({sorry}\:{that}\:{I}\:{sent}\:{the}\:{answer}\:{without}\:{that}\:{last}\:{bit}\right. \\ $$$$\left.{I}\:{hope}\:{you}\:{could}\:{understand}\:{me}\:{and}\:{that}\:{I}\:{solved}\:{your}\:{problem}\right) \\ $$

Commented by Engr_Jidda last updated on 24/Oct/20

yes sir, thank you so much

$$\mathrm{yes}\:\mathrm{sir},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com