Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 119479 by 675480065 last updated on 24/Oct/20

Π_(k=1) ^∞ cos((x/2^k )) = ?

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\prod}}\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{k}} }\right)\:=\:? \\ $$

Answered by Olaf last updated on 25/Oct/20

sin2θ = 2sinθcosθ  cosθ = (1/2).((sin2θ)/(sinθ)), θ ≠ kπ  ⇒ cos((x/2^k )) = (1/2).((sin((x/2^(k−1) )))/(sin((x/2^k ))))  And Π_(k=1) ^n cos((x/2^k )) = (1/2^n )Π_(k=1) ^n ((sin((x/2^(k−1) )))/(sin((x/2^k ))))  Π_(k=1) ^n cos((x/2^k )) = (1/2^n ).((sinx)/(sin((x/2^n ))))  (telescopic product)  Π_(k=1) ^∞ cos((x/2^k )) = sinx.lim_(n→∞) (1/(2^n sin((x/2^n ))))  2^n sin((x/2^n )) ∼_∞ 2^n ×(x/2^n ) = x  Π_(k=1) ^∞ cos((x/2^k )) = ((sinx)/x)

$$\mathrm{sin2}\theta\:=\:\mathrm{2sin}\theta\mathrm{cos}\theta \\ $$$$\mathrm{cos}\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{sin2}\theta}{\mathrm{sin}\theta},\:\theta\:\neq\:{k}\pi \\ $$$$\Rightarrow\:\mathrm{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)} \\ $$$$\mathrm{And}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }.\frac{\mathrm{sin}{x}}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\left(\mathrm{telescopic}\:\mathrm{product}\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\mathrm{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\:\mathrm{sin}{x}.\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} \mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\mathrm{2}^{{n}} \mathrm{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\:\underset{\infty} {\sim}\mathrm{2}^{{n}} ×\frac{{x}}{\mathrm{2}^{{n}} }\:=\:{x} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\mathrm{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\:\frac{\mathrm{sin}{x}}{{x}} \\ $$

Commented by 675480065 last updated on 25/Oct/20

Thanks sir.  can i apply complex numbers to it?

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{can}\:\mathrm{i}\:\mathrm{apply}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{to}\:\mathrm{it}? \\ $$

Answered by Bird last updated on 25/Oct/20

let A_n =Π_(k=1) ^n  cos((x/2^k )) snd  B_n =Π_(k=1) ^n  sin((x/2^k )) we hsve  A_n .B_n =Π_(k=1) ^n cos((x/2^k ))sin((x/2^k ))  =(1/2^n )Π_(k=1) ^n sin((x/2^(k−1) ))  =(1/2^n )Π_(k=0) ^(n−1) sin((x/2^k ))  =(1/2^n )((sinx)/(sin((x/2^n ))))×Π_(k=1) ^n  sin((x/2^k ))  =((sinx)/(2^n sin((x/2^n ))))×B_n   we hsve B_n ≠0 ⇒  A_n =((sinx)/(2^n  sin((x/2^n ))))  but  sin((x/2^n ))∼(x/2^n ) ⇒2^n sin((x/2^n ))∼x(n→∞)  ⇒lim_(n→∞) A_n =((sinx)/x) ⇒  Π_(k=1) ^∞ cos((x/2^k ))=((sinx)/x)

$${let}\:{A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:{snd} \\ $$$${B}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:{we}\:{hsve} \\ $$$${A}_{{n}} .{B}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} {cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right){sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\prod_{{k}=\mathrm{1}} ^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\frac{{sinx}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}×\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right) \\ $$$$=\frac{{sinx}}{\mathrm{2}^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}×{B}_{{n}} \:\:{we}\:{hsve}\:{B}_{{n}} \neq\mathrm{0}\:\Rightarrow \\ $$$${A}_{{n}} =\frac{{sinx}}{\mathrm{2}^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\:\:{but} \\ $$$${sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\sim\frac{{x}}{\mathrm{2}^{{n}} }\:\Rightarrow\mathrm{2}^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\sim{x}\left({n}\rightarrow\infty\right) \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} {A}_{{n}} =\frac{{sinx}}{{x}}\:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{1}} ^{\infty} {cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)=\frac{{sinx}}{{x}} \\ $$

Commented by 675480065 last updated on 25/Oct/20

Thanks Sir.  Plz i want to learn this topic.  how can i get notes on it sir.  pls help me if u have   Thanks

$$\mathrm{Thanks}\:\mathrm{Sir}. \\ $$$$\mathrm{Plz}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{this}\:\mathrm{topic}. \\ $$$$\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{get}\:\mathrm{notes}\:\mathrm{on}\:\mathrm{it}\:\mathrm{sir}. \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me}\:\mathrm{if}\:\mathrm{u}\:\mathrm{have}\: \\ $$$$\mathrm{Thanks} \\ $$

Answered by Bird last updated on 25/Oct/20

A_n =Π_(k=1) ^n  cos((x/2^k )) ⇒  A_n  =Π_(k=1) ^n ((e^(i(x/2^k )) +e^(−((ix)/2^k )) )/2)  =(1/2^n )Π_(k=1) ^n e^((ix)/2^k )  Π_(k=1) ^n (1+e^(−((2ix)/2^k )) )  =(1/2^n )e^(ixΣ_(k=1) ^n  (1/2^k ))    Π_(k=1) ^n (1+cos(((2x)/2^k ))−isin(((2x)/2^k )))  =(1/2^n ) e^(ixΣ_(k=0) ^(n−1) (1/(2^(k+1)  )))  ×Π_(k=1) ^n (1+cos((x/2^(k−1) ))−isin((x/2^(k−1) )))  =(1/2^n ) e^(((ix)/2)×(1/(1−(1/2)))) ×Π_(k=0) ^(n−1) (1+cos((x/2^k ))−isin((x/2^k )))  =(1/2^n ) e^(ix) ×Π_(k=0) ^(n−1) {2cos^2 ((x/2^(k+1) ))−2isin((x/2^(k+1) ))cos((x/2^(k+1) ))}  ....be continued..i think this  method give the answer ...

$${A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:\Rightarrow \\ $$$${A}_{{n}} \:=\prod_{{k}=\mathrm{1}} ^{{n}} \frac{{e}^{{i}\frac{{x}}{\mathrm{2}^{{k}} }} +{e}^{−\frac{{ix}}{\mathrm{2}^{{k}} }} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\prod_{{k}=\mathrm{1}} ^{{n}} {e}^{\frac{{ix}}{\mathrm{2}^{{k}} }} \:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+{e}^{−\frac{\mathrm{2}{ix}}{\mathrm{2}^{{k}} }} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{e}^{{ix}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }} \:\:\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+{cos}\left(\frac{\mathrm{2}{x}}{\mathrm{2}^{{k}} }\right)−{isin}\left(\frac{\mathrm{2}{x}}{\mathrm{2}^{{k}} }\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:{e}^{{ix}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}^{{k}+\mathrm{1}} \:}} \:×\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+{cos}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)−{isin}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:{e}^{\frac{{ix}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}} ×\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}+{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)−{isin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:{e}^{{ix}} ×\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left\{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{k}+\mathrm{1}} }\right)−\mathrm{2}{isin}\left(\frac{{x}}{\mathrm{2}^{{k}+\mathrm{1}} }\right){cos}\left(\frac{{x}}{\mathrm{2}^{{k}+\mathrm{1}} }\right)\right\} \\ $$$$....{be}\:{continued}..{i}\:{think}\:{this} \\ $$$${method}\:{give}\:{the}\:{answer}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com