Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 119567 by abdul88 last updated on 25/Oct/20

  (1 −x)(d^2 y/dx^(2 ) ) + x(dy/dx) − xy = (1/(1 − x)) , x≠1  has power series solution for ∣x∣<1

(1x)d2ydx2+xdydxxy=11x,x1 haspowerseriessolutionforx∣<1

Answered by mathmax by abdo last updated on 26/Oct/20

e⇒(1−x)^2 y^(′′) +x(1−x)y^′ −x(1−x)y =1       (x≠1)let y=Σ_(n=0) ^∞ a_n x^n   ⇒y^′  =Σ_(n=1) ^∞ na_n x^(n−1)  and y^(′′)  =Σ_(n=2) ^∞ n(n−1)x^(n−2)   e⇒(x^2 −2x+1)Σ_(n=2) ^∞ n(n−1)a_n x^(n−2) +(x−x^2 )Σ_(n=1) ^∞ na_n x^(n−1)   +(x^2 −x)Σ_(n=0) ^∞  a_n x^n  =1 ⇒  Σ_(n=2) ^∞ n(n−1)a_n x^n −2Σ_(n=2) ^∞ n(n−1)a_n x^(n−1) +Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   +Σ_(n=1) ^∞ na_n x^n −Σ_(n=1) ^∞ na_n x^(n+1)  +Σ_(n=0) ^∞ a_n x^(n+2) −Σ_(n=0) ^∞ a_n x^(n+1)  =1 ⇒  ⇒Σ_(n=2) ^∞ n(n−1)a_n x^n −2Σ_(n=1) ^∞ (n+1)na_(n+1) x^n   +Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n  +Σ_(n=1) ^∞ na_n x^n −Σ_(n=2) ^∞ (n−1)a_(n−1) x^n   +Σ_(n=2) ^∞ a_(n−2) x^n −Σ_(n=1) ^∞ a_(n−1) x^n  =1 ⇒  Σ_(n=2) ^∞ {n(n−1)a_n −2n(n+1)a_(n+1) +(n+1)(n+2)a_(n+2) +na_n   −(n−1)a_(n−1)  +a_(n−2) −a_(n−1) )x^n  −4a_2 x+2a_2 +6a_3 x  a_1 x−a_0 x =1 ⇒  Σ_(n=2) ^∞ {n^2 a_n −2n(n+1)a_(n+1) +(n+1)(n+2)a_(n+2) −na_(n−1) +a_(n−2) )x^n   +...=1  ....be continued...

e(1x)2y+x(1x)yx(1x)y=1(x1)lety=n=0anxn y=n=1nanxn1andy=n=2n(n1)xn2 e(x22x+1)n=2n(n1)anxn2+(xx2)n=1nanxn1 +(x2x)n=0anxn=1 n=2n(n1)anxn2n=2n(n1)anxn1+n=2n(n1)anxn2 +n=1nanxnn=1nanxn+1+n=0anxn+2n=0anxn+1=1 n=2n(n1)anxn2n=1(n+1)nan+1xn +n=0(n+2)(n+1)an+2xn+n=1nanxnn=2(n1)an1xn +n=2an2xnn=1an1xn=1 n=2{n(n1)an2n(n+1)an+1+(n+1)(n+2)an+2+nan (n1)an1+an2an1)xn4a2x+2a2+6a3x a1xa0x=1 n=2{n2an2n(n+1)an+1+(n+1)(n+2)an+2nan1+an2)xn +...=1....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com