Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119647 by IE last updated on 26/Oct/20

Answered by Ar Brandon last updated on 26/Oct/20

En coordonne^� es sphe^� riques nous avons   { ((x=rsinϕcosθ),(r∈[0,R])),((y=rsinϕsinθ),(θ∈[0,π])),((z=rcosϕ),(ϕ∈[0,α])) :}  ⇒Ω=∫_0 ^π ∫_0 ^α ∫_0 ^R ((∣∣J∣∣)/(rcosϕ))drdϕdθ , ∣∣J∣∣=la matrice Jacobien           =∫_0 ^π ∫_0 ^α ∫_0 ^R ((r^2 sinϕ)/(rcosϕ))drdϕdθ=∫_0 ^π ∫_0 ^α ∫_0 ^R rtanϕdrdϕdθ           =[(r^2 /2)]_0 ^R [((ln∣secϕ∣)/1)]_0 ^α [(θ/1)]_0 ^π =((πR^2 ln∣secα∣)/2)

$$\mathrm{En}\:\mathrm{coordonn}\acute {\mathrm{e}es}\:\mathrm{sph}\acute {\mathrm{e}riques}\:\mathrm{nous}\:\mathrm{avons} \\ $$$$\begin{cases}{\mathrm{x}=\mathrm{rsin}\varphi\mathrm{cos}\theta}&{\mathrm{r}\in\left[\mathrm{0},\mathrm{R}\right]}\\{\mathrm{y}=\mathrm{rsin}\varphi\mathrm{sin}\theta}&{\theta\in\left[\mathrm{0},\pi\right]}\\{\mathrm{z}=\mathrm{rcos}\varphi}&{\varphi\in\left[\mathrm{0},\alpha\right]}\end{cases} \\ $$$$\Rightarrow\Omega=\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\alpha} \int_{\mathrm{0}} ^{\mathrm{R}} \frac{\mid\mid\mathrm{J}\mid\mid}{\mathrm{rcos}\varphi}\mathrm{drd}\varphi\mathrm{d}\theta\:,\:\mid\mid\mathrm{J}\mid\mid=\mathrm{la}\:\mathrm{matrice}\:\mathrm{Jacobien} \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\alpha} \int_{\mathrm{0}} ^{\mathrm{R}} \frac{\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi}{\mathrm{rcos}\varphi}\mathrm{drd}\varphi\mathrm{d}\theta=\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\alpha} \int_{\mathrm{0}} ^{\mathrm{R}} \mathrm{rtan}\varphi\mathrm{drd}\varphi\mathrm{d}\theta \\ $$$$\:\:\:\:\:\:\:\:\:=\left[\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{R}} \left[\frac{\mathrm{ln}\mid\mathrm{sec}\varphi\mid}{\mathrm{1}}\right]_{\mathrm{0}} ^{\alpha} \left[\frac{\theta}{\mathrm{1}}\right]_{\mathrm{0}} ^{\pi} =\frac{\pi\mathrm{R}^{\mathrm{2}} \mathrm{ln}\mid\mathrm{sec}\alpha\mid}{\mathrm{2}} \\ $$

Commented by Ar Brandon last updated on 26/Oct/20

∣J∣= determinant (((∂x/∂r),(∂x/∂ϕ),(∂x/∂θ)),((∂y/∂r),(∂y/∂ϕ),(∂y/∂θ)),((∂z/∂r),(∂z/∂ϕ),(∂z/∂θ)))= determinant (((sinϕcosθ),(rcosϕcosθ),(−rsinϕsinθ)),((sinϕsinθ),(rcosϕsinθ),(rsinϕcosθ)),((cosϕ),(−rsinϕ),0))  =sinϕcosθ(r^2 sin^2 ϕcosθ)+rcosϕcosθ(rsinϕcosϕcosθ)       +rsinϕsinθ(rsin^2 ϕsinθ+rcos^2 ϕsinθ)  =r^2 sin^3 ϕcos^2 θ+r^2 sinϕcos^2 ϕcos^2 θ+r^2 sinϕsin^2 θ(sin^2 ϕ+cos^2 ϕ)_(1)   =r^2 sinϕcos^2 θ(sin^2 ϕ+cos^2 ϕ)_(1)  +r^2 sinϕsin^2 θ  =r^2 sinϕ(cos^2 θ+sin^2 θ)_(1) =r^2 sinϕ

$$\mid\mathrm{J}\mid=\begin{vmatrix}{\frac{\partial\mathrm{x}}{\partial\mathrm{r}}}&{\frac{\partial\mathrm{x}}{\partial\varphi}}&{\frac{\partial\mathrm{x}}{\partial\theta}}\\{\frac{\partial\mathrm{y}}{\partial\mathrm{r}}}&{\frac{\partial\mathrm{y}}{\partial\varphi}}&{\frac{\partial\mathrm{y}}{\partial\theta}}\\{\frac{\partial\mathrm{z}}{\partial\mathrm{r}}}&{\frac{\partial\mathrm{z}}{\partial\varphi}}&{\frac{\partial\mathrm{z}}{\partial\theta}}\end{vmatrix}=\begin{vmatrix}{\mathrm{sin}\varphi\mathrm{cos}\theta}&{\mathrm{rcos}\varphi\mathrm{cos}\theta}&{−\mathrm{rsin}\varphi\mathrm{sin}\theta}\\{\mathrm{sin}\varphi\mathrm{sin}\theta}&{\mathrm{rcos}\varphi\mathrm{sin}\theta}&{\mathrm{rsin}\varphi\mathrm{cos}\theta}\\{\mathrm{cos}\varphi}&{−\mathrm{rsin}\varphi}&{\mathrm{0}}\end{vmatrix} \\ $$$$=\mathrm{sin}\varphi\mathrm{cos}\theta\left(\mathrm{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \varphi\mathrm{cos}\theta\right)+\mathrm{rcos}\varphi\mathrm{cos}\theta\left(\mathrm{rsin}\varphi\mathrm{cos}\varphi\mathrm{cos}\theta\right) \\ $$$$\:\:\:\:\:+\mathrm{rsin}\varphi\mathrm{sin}\theta\left(\mathrm{rsin}^{\mathrm{2}} \varphi\mathrm{sin}\theta+\mathrm{rcos}^{\mathrm{2}} \varphi\mathrm{sin}\theta\right) \\ $$$$=\mathrm{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{3}} \varphi\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\mathrm{cos}^{\mathrm{2}} \varphi\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\mathrm{sin}^{\mathrm{2}} \theta\underset{\mathrm{1}} {\left(\mathrm{sin}^{\mathrm{2}} \varphi+\mathrm{cos}^{\mathrm{2}} \varphi\right)} \\ $$$$=\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\mathrm{cos}^{\mathrm{2}} \theta\underset{\mathrm{1}} {\left(\mathrm{sin}^{\mathrm{2}} \varphi+\mathrm{cos}^{\mathrm{2}} \varphi\right)}\:+\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\mathrm{sin}^{\mathrm{2}} \theta \\ $$$$=\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\underset{\mathrm{1}} {\left(\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta\right)}=\mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com