Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 119657 by bemath last updated on 26/Oct/20

Suppose that the greatest common divisor of  the positive integers a,b and c is 1 and  ((ab)/(a−b)) = c . Prove that a−b is a  perfect square

$${Suppose}\:{that}\:{the}\:{greatest}\:{common}\:{divisor}\:{of} \\ $$$${the}\:{positive}\:{integers}\:{a},{b}\:{and}\:{c}\:{is}\:\mathrm{1}\:{and} \\ $$$$\frac{{ab}}{{a}−{b}}\:=\:{c}\:.\:{Prove}\:{that}\:{a}−{b}\:{is}\:{a} \\ $$$${perfect}\:{square} \\ $$

Commented by som(math1967) last updated on 26/Oct/20

I think a−b=1 is a perfect square  If a,b both odd then a−b=even  ∴((ab)/(a−b))∉Z [but c∈Z]  if one of a,b even and other  is odd ((ab)/(a−b))∈Z only a−b=1  [G.C.D of a,b,c is 1]  so a−b perfect square.

$$\mathrm{I}\:\mathrm{think}\:\mathrm{a}−\mathrm{b}=\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\mathrm{If}\:\mathrm{a},\mathrm{b}\:\mathrm{both}\:\mathrm{odd}\:\mathrm{then}\:\mathrm{a}−\mathrm{b}=\mathrm{even} \\ $$$$\therefore\frac{\mathrm{ab}}{\mathrm{a}−\mathrm{b}}\notin\mathrm{Z}\:\left[\mathrm{but}\:\mathrm{c}\in\mathrm{Z}\right] \\ $$$$\mathrm{if}\:\mathrm{one}\:\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{even}\:\mathrm{and}\:\mathrm{other} \\ $$$$\mathrm{is}\:\mathrm{odd}\:\frac{\mathrm{ab}}{\mathrm{a}−\mathrm{b}}\in\mathrm{Z}\:\mathrm{only}\:\mathrm{a}−\mathrm{b}=\mathrm{1} \\ $$$$\left[\mathrm{G}.\mathrm{C}.\mathrm{D}\:\mathrm{of}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{is}\:\mathrm{1}\right] \\ $$$$\mathrm{so}\:\mathrm{a}−\mathrm{b}\:\mathrm{perfect}\:\mathrm{square}. \\ $$

Commented by bemath last updated on 26/Oct/20

yes

$${yes} \\ $$

Answered by 1549442205PVT last updated on 26/Oct/20

Supoose a,b,c∈N^(∗ ) .From the hypothesis  we have ((ab)/(a−b)) = c⇔((a(b−a)+a^2 )/(a−b))=c  ⇒−a+(a^2 /(a−b))=c⇒(a−b)(a+c)=a^2 (★)  Suppose gcd(a−b,a+c)=d.Then   { ((a−b=md)),((a+c=nd)) :} (∗)with gcd(m,n)=1(d,m,n∈N^∗ )  (★)⇒a^2 =mnd^2 ⇒mn=((a/d))^2 =p^2 (p∈N^∗ )  and a^2 =(pd)^2 ⇒a=pd,mn=p^2 (1)  Since m,n are coprime ,from (1)we infer  there esixts u,v∈N^∗ so that  m=u^2 ,n=v^2 .Hence,from  (1) and (∗)we infer a⋮d, b⋮d,c⋮d  ,but by the hypothesis gcd(a,b,c)=1  ⇒d=1,so a−b=md=u^2 .Thus,a−b is  perfect square (q.e.d)

$$\mathrm{Supoose}\:\mathrm{a},\mathrm{b},\mathrm{c}\in\mathrm{N}^{\ast\:} .\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis} \\ $$$$\mathrm{we}\:\mathrm{have}\:\frac{{ab}}{{a}−{b}}\:=\:{c}\Leftrightarrow\frac{\mathrm{a}\left(\mathrm{b}−\mathrm{a}\right)+\mathrm{a}^{\mathrm{2}} }{\mathrm{a}−\mathrm{b}}=\mathrm{c} \\ $$$$\Rightarrow−\mathrm{a}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{a}−\mathrm{b}}=\mathrm{c}\Rightarrow\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{a}+\mathrm{c}\right)=\mathrm{a}^{\mathrm{2}} \left(\bigstar\right) \\ $$$$\mathrm{Suppose}\:\mathrm{gcd}\left(\mathrm{a}−\mathrm{b},\mathrm{a}+\mathrm{c}\right)=\mathrm{d}.\mathrm{Then} \\ $$$$\begin{cases}{\mathrm{a}−\mathrm{b}=\mathrm{md}}\\{\mathrm{a}+\mathrm{c}=\mathrm{nd}}\end{cases}\:\left(\ast\right)\mathrm{with}\:\mathrm{gcd}\left(\mathrm{m},\mathrm{n}\right)=\mathrm{1}\left(\mathrm{d},\mathrm{m},\mathrm{n}\in\mathrm{N}^{\ast} \right) \\ $$$$\left(\bigstar\right)\Rightarrow\mathrm{a}^{\mathrm{2}} =\mathrm{mnd}^{\mathrm{2}} \Rightarrow\mathrm{mn}=\left(\frac{\mathrm{a}}{\mathrm{d}}\right)^{\mathrm{2}} =\mathrm{p}^{\mathrm{2}} \left(\mathrm{p}\in\mathrm{N}^{\ast} \right) \\ $$$$\mathrm{and}\:\mathrm{a}^{\mathrm{2}} =\left(\mathrm{pd}\right)^{\mathrm{2}} \Rightarrow\mathrm{a}=\mathrm{pd},\mathrm{mn}=\mathrm{p}^{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$\mathrm{Since}\:\mathrm{m},\mathrm{n}\:\mathrm{are}\:\mathrm{coprime}\:,\mathrm{from}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{there}\:\mathrm{esixts}\:\mathrm{u},\mathrm{v}\in\mathrm{N}^{\ast} \mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{m}=\mathrm{u}^{\mathrm{2}} ,\mathrm{n}=\mathrm{v}^{\mathrm{2}} .\mathrm{Hence},\mathrm{from} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\ast\right)\mathrm{we}\:\mathrm{infer}\:\mathrm{a}\vdots\mathrm{d},\:\mathrm{b}\vdots\mathrm{d},\mathrm{c}\vdots\mathrm{d} \\ $$$$,\mathrm{but}\:\mathrm{by}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{gcd}\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{d}=\mathrm{1},\mathrm{so}\:\mathrm{a}−\mathrm{b}=\mathrm{md}=\mathrm{u}^{\mathrm{2}} .\mathrm{Thus},\mathrm{a}−\mathrm{b}\:\mathrm{is} \\ $$$$\mathrm{perfect}\:\mathrm{square}\:\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com