Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 119754 by Bird last updated on 26/Oct/20

find Σ_(n=1) ^∞  (u_n /(n!)) if  u_n  =u_(n+1) +u_(n−1)

findn=1unn!ifun=un+1+un1

Commented by Dwaipayan Shikari last updated on 26/Oct/20

u_n =u_(n+1) +u_(n−1)   r^n =r^(n+1) +r^(n−1)   1=r+(1/r)⇒r^2 −r+1=0⇒r=((1±i(√3))/2)=e^(±((iπ)/3))   u_n =Υe^((iπn)/3) +Λe^(−((iπn)/3))   Σ_(n=1) ^∞ (u_n /(n!))=ΥΣ_(n=1) ^∞ (((e^((iπ)/3) )^n )/(n!))+ΛΣ_(n=1) ^∞ (((e^((−iπ)/3) )^n )/(n!))  =Υ(e^e^((iπ)/3)  −1)+Λ(e^e^((−iπ)/3)  −1)

un=un+1+un1rn=rn+1+rn11=r+1rr2r+1=0r=1±i32=e±iπ3un=Υeiπn3+Λeiπn3n=1unn!=Υn=1(eiπ3)nn!+Λn=1(eiπ3)nn!=Υ(eeiπ31)+Λ(eeiπ31)

Commented by talminator2856791 last updated on 27/Oct/20

 WOW that is a very beautiful answer  where do you learn that?

WOWthatisaverybeautifulanswerwheredoyoulearnthat?

Commented by Dwaipayan Shikari last updated on 27/Oct/20

Σ_(n=1) ^∞ (x^n /(n!)) =e^x −1  Here x=e^((iπ)/3)   and  e^((−iπ)/3)            :)           :)

n=1xnn!=ex1Herex=eiπ3andeiπ3:):)

Answered by Olaf last updated on 26/Oct/20

u_(n+1) −u_n +u_(n−1)  = 0  r^2 −r+1 = 0  Δ = (−1)^2 −4(1)(1) = −3  r = ((1±(√3)i)/2) = e^(±i(π/3))   u_n  = λe^(+in(π/3)) +μe^(−in(π/3))   (λ and μ depend on u_0  and u_1 )  S = Σ_(n=1) ^∞ (u_n /(n!)) = λΣ_(n=0) ^∞ (((e^(i(π/3)) )^n )/(n!))+μΣ_(n=0) ^∞ (((e^(−i(π/3)) )^n )/(n!))−u_0   S = λe^((1/2)+i((√3)/2)) +μe^((1/2)−i((√3)/2)) −u_0   S = (√e)(λe^(i((√3)/2)) +μe^(−i((√3)/2)) )−u_0   with :  u_0  = λ+μ  u_1  = λe^(i(π/3)) +μe^(−i(π/3))    { (),() :}

un+1un+un1=0r2r+1=0Δ=(1)24(1)(1)=3r=1±3i2=e±iπ3un=λe+inπ3+μeinπ3(λandμdependonu0andu1)S=n=1unn!=λn=0(eiπ3)nn!+μn=0(eiπ3)nn!u0S=λe12+i32+μe12i32u0S=e(λei32+μei32)u0with:u0=λ+μu1=λeiπ3+μeiπ3{

Answered by mathmax by abdo last updated on 26/Oct/20

u_n =u_(n+1) +u_(n−1)  ⇒u_(n+1) −u_n +u_(n−1) =0 ⇒u_(n+2) −u_(n+1) +u_n =0  →r^2 −r +1 =0 →Δ=1−4 =−3 ⇒r_1 =((1+i(√3))/2) =e^((iπ)/3)   r_2 =((1−i(√3))/2)=e^(−((iπ)/3))  ⇒u_n =ar_1 ^n  +br_1 ^n  =ae^((inπ)/3)  +be^(−i((nπ)/3))   ⇒Σ_(n=1) ^∞  (u_n /n) =a Σ_(n=1) ^∞  (e^((inπ)/3) /n) +bΣ_(n=1) ^∞  (e^(−((inπ)/3)) /n)  let determine f(z) =Σ_(n=1) ^∞  (z^n /n)  we have  for ∣z∣<1  f^′ (z)=Σ_(n=1) ^∞  z^(n−1)  =Σ_(n=0) ^∞   z^n  =(1/(1−z)) ⇒f(z) =−ln(1−z)+c  c=f(0)=0 ⇒Σ_(n=1) ^∞  (z^n /n)=−ln(1−z) ⇒  Σ_(n=1) ^∞  (u_n /n) =−aln(1−e^((iπ)/3) )−bln(1−e^(−((iπ)/3)) ) we have  ln(1−e^((iπ)/3) )=ln(1−cos((π/3))−isin((π/3)))  =ln(2sin^2 ((π/6))−2isin((π/6))cos((π/6)))  =ln(−2isin((π/6))e^((iπ)/6) ) =ln(2)+ln(−i)+ln(sin(π/6))+((iπ)/6)  =ln(2)−((iπ)/2) +ln(sin((π/6)))+((iπ)/6)  ln(1−e^(−((iπ)/3)) ) =ln(1−cos((π/3))+isin((π/3)))  =ln(2sin^2 ((π/6))+2isin((π/6))cos((π/6)))  =ln(2isin((π/6))e^(−((iπ)/6)) )=ln(2)+ln(i)+ln(sin((π/6)))−((iπ)/6)  =ln(2)+((iπ)/2) +ln(sin((π/2)))−((iπ)/6) ⇒  Σ_(n=1) ^∞  (u_n /n) =−a{ln(2)−((iπ)/2)+ln((1/2))+((iπ)/6)}−b{ln(2)+((iπ)/2)+ln((1/2))−((iπ)/6)}  =−ai((π/6)−(π/2))−bi((π/2)−(π/6))  =−ai(−(π/3))−bi((π/3)) =(a−b)i(π/3)    a and b can be found by initial conditions

un=un+1+un1un+1un+un1=0un+2un+1+un=0r2r+1=0Δ=14=3r1=1+i32=eiπ3r2=1i32=eiπ3un=ar1n+br1n=aeinπ3+beinπ3n=1unn=an=1einπ3n+bn=1einπ3nletdeterminef(z)=n=1znnwehaveforz∣<1f(z)=n=1zn1=n=0zn=11zf(z)=ln(1z)+cc=f(0)=0n=1znn=ln(1z)n=1unn=aln(1eiπ3)bln(1eiπ3)wehaveln(1eiπ3)=ln(1cos(π3)isin(π3))=ln(2sin2(π6)2isin(π6)cos(π6))=ln(2isin(π6)eiπ6)=ln(2)+ln(i)+ln(sinπ6)+iπ6=ln(2)iπ2+ln(sin(π6))+iπ6ln(1eiπ3)=ln(1cos(π3)+isin(π3))=ln(2sin2(π6)+2isin(π6)cos(π6))=ln(2isin(π6)eiπ6)=ln(2)+ln(i)+ln(sin(π6))iπ6=ln(2)+iπ2+ln(sin(π2))iπ6n=1unn=a{ln(2)iπ2+ln(12)+iπ6}b{ln(2)+iπ2+ln(12)iπ6}=ai(π6π2)bi(π2π6)=ai(π3)bi(π3)=(ab)iπ3aandbcanbefoundbyinitialconditions

Commented by mathmax by abdo last updated on 27/Oct/20

sorry i have solved Σ (u_n /n)  not Σ (u_n /(n!))...!

sorryihavesolvedΣunnnotΣunn!...!

Commented by mathmax by abdo last updated on 27/Oct/20

we have u_n =ae^((inπ)/3)  +be^(−((inπ)/3))  ⇒  Σ_(n=1) ^∞  (u_n /(n!)) =a Σ_(n=1) ^∞ (((e^((iπ)/3) )^n )/(n!)) +b Σ_(n=1) ^∞  (((e^(−((iπ)/3)) )^n )/(n!))  =a( e^e^((iπ)/3)  −1) +b(e^e^(−((iπ)/3))  −1)  =a{e^((1/2)+((i(√3))/2)) −1)+b(e^((1/2)−((i(√3))/2)) −1)  =a e^(1/2) (cos(((√3)/2))+isin(((√3)/(2 ))))+be^(1/2) (cos(((√3)/2))−isin(((√3)/2)))−(a+b)  =(a+b)(√e)cos(((√3)/2))+i(a−b)(√e)sin(((√3)/2))−(a+b)

wehaveun=aeinπ3+beinπ3n=1unn!=an=1(eiπ3)nn!+bn=1(eiπ3)nn!=a(eeiπ31)+b(eeiπ31)=a{e12+i321)+b(e12i321)=ae12(cos(32)+isin(32))+be12(cos(32)isin(32))(a+b)=(a+b)ecos(32)+i(ab)esin(32)(a+b)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com