Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119762 by mathmax by abdo last updated on 26/Oct/20

calculate ∫_0 ^∞    ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

calculate0x4dx(2x+1)5(3x+1)8

Answered by Olaf last updated on 26/Oct/20

((5319686)/(105))+124952ln((2/3))    ... The calculous is very long !  R(x) = (x^4 /((2x+1)^5 (3x+1)^8 ))  R(x) = ((16)/((2x+1)^5 ))+((320)/((2x+1)^4 ))+((3744)/((2x+1)^3 ))  +((37344)/((2x+1)^2 ))+((249904)/(2x+1))+(3/((3x+1)^8 ))  −((42)/((3x+1)^7 ))+((318)/((3x+1)^6 ))−((1752)/((3x+1)^5 ))  +((7923)/((3x+1)^4 ))−((31326)/((3x+1)^3 ))+((112404)/((3x+1)^2 ))  −((374856)/(3x+1))  ...

5319686105+124952ln(23)...Thecalculousisverylong!R(x)=x4(2x+1)5(3x+1)8R(x)=16(2x+1)5+320(2x+1)4+3744(2x+1)3+37344(2x+1)2+2499042x+1+3(3x+1)842(3x+1)7+318(3x+1)61752(3x+1)5+7923(3x+1)431326(3x+1)3+112404(3x+1)23748563x+1...

Commented by mathmax by abdo last updated on 26/Oct/20

thanks sir

thankssir

Answered by MJS_new last updated on 26/Oct/20

method (1) decomposition  method (2) Ostrogradski  both are long...  method (3)  ∫(x^4 /((2x+1)^5 (3x+1)^8 ))dx=       [t=((2x+1)/(3x+1)) → dx=−(3x+1)^2 dt]  =−∫(((t−1)^4 (3t−2)^7 )/t^5 )dt  this seems easier to me...  (((t−1)^4 (3t−2)^7 )/t^5 )=  =2187t^6 −18954t^5 +74358t^4 −174312t^3 +       +271323t^2 −294462t−((124952)/t)+((47888)/t^2 )−       −((12192)/t^3 )+((1856)/t^4 )−((128)/t^5 )+227388  and these are easy to integrate

method(1)decompositionmethod(2)Ostrogradskibotharelong...method(3)x4(2x+1)5(3x+1)8dx=[t=2x+13x+1dx=(3x+1)2dt]=(t1)4(3t2)7t5dtthisseemseasiertome...(t1)4(3t2)7t5==2187t618954t5+74358t4174312t3++271323t2294462t124952t+47888t212192t3+1856t4128t5+227388andtheseareeasytointegrate

Commented by mathmax by abdo last updated on 27/Oct/20

thank you sir mjs

thankyousirmjs

Commented by MJS_new last updated on 27/Oct/20

as always, you are welcome

asalways,youarewelcome

Answered by mathmax by abdo last updated on 27/Oct/20

let I =∫_0 ^∞  (x^4 /((2x+1)^5 (3x+1)^8 ))dx ⇒  I =∫_0 ^∞  (x^4 /((((2x+1)/(3x+1)))^5 (3x+1)^(13) ))dx  we do the chang.((2x+1)/(3x+1)) =t ⇒  2x+1 =3tx+t ⇒(2−3t)x=t−1 ⇒x =((t−1)/(2−3t)) ⇒  (dx/dt)=((2−3t−(t−1)(−3))/((2−3t)^2 ))=((2−3t+3t−3)/((2−3t)^2 ))=((−1)/((2−3t)^2 ))  3x+1 =((3t−3)/(2−3t))+1 =((3t−3+2−3t)/(2−3t))=((−1)/(2−3t)) ⇒  I =∫_1 ^(2/3)  (((t−1)^4 )/((2−3t)^4 ))×(1/(t^5 (((−1)/(2−3t)))^(13) ))×((−1)/((2−3t)^2 ))dt  =∫_(2/3) ^1      (((t−1)^4 )/((2−3t)^6 t^5 ))×(3t−2)^(13)  dt  =∫_(2/3) ^1   (((t−1)^4 (3t−2)^7 )/t^5 )dt  we have  (t−1)^4  =Σ_(k=0) ^4  C_4 ^k  t^k (−1)^k =1−C_4 ^1 t +C_4 ^2 t^2 −C_4 ^3 t^3  +t^4   =1−4t+6t^2 −4t^3 +t^4  ⇒  I =∫_(2/3) ^1 ((1/t^5 )−(4/t^4 )+(6/t^3 )−(4/t^2 ) +(1/t))(3t−2)^7 dt  =∫_(2/3) ^1  (((3t−2)^7 )/t^5 )dt−4∫_(2/3) ^1 (((3t−2)^7 )/t^4 ) +6∫_(2/3) ^1  (((3t−2)^7 )/t^3 )dt−4∫_(2/3) ^1  (((3t−2)^7 )/t^2 )  +∫_(2/3) ^1  (((3t−2)^7 )/t)dt  those integrals can be calculsted by binome formula  ∫_(2/3) ^1  (((3t−2)^7 )/t^5 )dt =∫_(2/3) ^1 ((Σ_(k=0) ^7 C_7 ^k (3t)^k (−2)^(7−k) )/t^5 )dt  =∫_(2/3) ^1  Σ_(k=0) ^7 C_7 ^k 3^k (−2)^(7−k) t^(k−5) dt  =Σ_(k=0 and k≠4) ^7  C_7 ^k  3^k (−2)^(7−k)   [(1/(k−4))t^(k−4) ]_(2/3) ^1   +C_7 ^4  3^4 (−2)^3 [ln∣t∣]_(2/3) ^1   =Σ_(k=0 and k≠4) ^7  ((C_7 ^k  3^k (−2)^(7−k) )/(k−4))(1−((2/3))^(k−4) )−C_7 ^4  3^4 (−2)^3 ln((2/3))  ....

letI=0x4(2x+1)5(3x+1)8dxI=0x4(2x+13x+1)5(3x+1)13dxwedothechang.2x+13x+1=t2x+1=3tx+t(23t)x=t1x=t123tdxdt=23t(t1)(3)(23t)2=23t+3t3(23t)2=1(23t)23x+1=3t323t+1=3t3+23t23t=123tI=123(t1)4(23t)4×1t5(123t)13×1(23t)2dt=231(t1)4(23t)6t5×(3t2)13dt=231(t1)4(3t2)7t5dtwehave(t1)4=k=04C4ktk(1)k=1C41t+C42t2C43t3+t4=14t+6t24t3+t4I=231(1t54t4+6t34t2+1t)(3t2)7dt=231(3t2)7t5dt4231(3t2)7t4+6231(3t2)7t3dt4231(3t2)7t2+231(3t2)7tdtthoseintegralscanbecalculstedbybinomeformula231(3t2)7t5dt=231k=07C7k(3t)k(2)7kt5dt=231k=07C7k3k(2)7ktk5dt=k=0andk47C7k3k(2)7k[1k4tk4]231+C7434(2)3[lnt]231=k=0andk47C7k3k(2)7kk4(1(23)k4)C7434(2)3ln(23)....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com