Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119807 by Ar Brandon last updated on 27/Oct/20

Let f be a real-valued function defined on the inte-  rval [−1, 1]. If the area of the equilateral triangle with  (0, 0) and (x, f(x)) as two vertices is (√3)/4, then f(x)  is equal to  (A) (√(1−x^2 ))                                 (B) (√(1+x^2 ))  (C) −(√(1−x^2 ))                              (D) −(√(1+x^2 ))

$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}-\mathrm{valued}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inte}- \\ $$$$\mathrm{rval}\:\left[−\mathrm{1},\:\mathrm{1}\right].\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\left(\mathrm{0},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{x},\:{f}\left(\mathrm{x}\right)\right)\:\mathrm{as}\:\mathrm{two}\:\mathrm{vertices}\:\mathrm{is}\:\sqrt{\mathrm{3}}/\mathrm{4},\:\mathrm{then}\:{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{C}\right)\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$

Answered by TANMAY PANACEA last updated on 28/Oct/20

side of equilatera [triangle=a=(√(x^2 +f^2 (x)))   ((√3)/4)×a^2  =((√3)/4)  a^2 =1  x^2 +f^2 (x)=1  f(x)=(√(1−x^2 ))

$${side}\:{of}\:{equilatera}\:\left[{triangle}={a}=\sqrt{{x}^{\mathrm{2}} +{f}^{\mathrm{2}} \left({x}\right)}\:\right. \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×{a}^{\mathrm{2}} \:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$${a}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{f}^{\mathrm{2}} \left({x}\right)=\mathrm{1} \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$

Commented by Ar Brandon last updated on 28/Oct/20

Thank you Sir

Commented by Ar Brandon last updated on 28/Oct/20

Thanks Sir

Commented by Ar Brandon last updated on 03/Nov/20

Sir how come ((√3)/4)×a^2  ? Is it by using  (1/2)a×a sin60° ? 60° being the angle  between two adjacent sides.

$$\mathrm{Sir}\:\mathrm{how}\:\mathrm{come}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\mathrm{a}^{\mathrm{2}} \:?\:\mathrm{Is}\:\mathrm{it}\:\mathrm{by}\:\mathrm{using} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{a}×\mathrm{a}\:\mathrm{sin60}°\:?\:\mathrm{60}°\:\mathrm{being}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{two}\:\mathrm{adjacent}\:\mathrm{sides}. \\ $$

Commented by TANMAY PANACEA last updated on 28/Oct/20

area=(√(s(s−a)(s−b)(s−c)))   here a=b=c  s=((a+b+c)/2)=((a+a+a)/2)=((3a)/2)  (s−a)=((3a)/2)−a=(a/2)  area=(√(((3a)/2)×(a/2)×(a/2)×(a/2))) =((√3)/4)a^2

$${area}=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\: \\ $$$${here}\:{a}={b}={c} \\ $$$${s}=\frac{{a}+{b}+{c}}{\mathrm{2}}=\frac{{a}+{a}+{a}}{\mathrm{2}}=\frac{\mathrm{3}{a}}{\mathrm{2}} \\ $$$$\left({s}−{a}\right)=\frac{\mathrm{3}{a}}{\mathrm{2}}−{a}=\frac{{a}}{\mathrm{2}} \\ $$$${area}=\sqrt{\frac{\mathrm{3}{a}}{\mathrm{2}}×\frac{{a}}{\mathrm{2}}×\frac{{a}}{\mathrm{2}}×\frac{{a}}{\mathrm{2}}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{a}^{\mathrm{2}} \\ $$

Commented by TANMAY PANACEA last updated on 28/Oct/20

or mdthod area=(1/2)×a×h  sin60^o  =(h/a)→h=((√3)/2)a  area=((√3)/2)×a×(1/2)×a=((√3)/4)a^2

$${or}\:{mdthod}\:{area}=\frac{\mathrm{1}}{\mathrm{2}}×{a}×{h} \\ $$$${sin}\mathrm{60}^{{o}} \:=\frac{{h}}{{a}}\rightarrow{h}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{a} \\ $$$${area}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×{a}×\frac{\mathrm{1}}{\mathrm{2}}×{a}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{a}^{\mathrm{2}} \\ $$

Commented by TANMAY PANACEA last updated on 28/Oct/20

yes sir

$${yes}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com