Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 119812 by I want to learn more last updated on 27/Oct/20

Answered by talminator2856791 last updated on 27/Oct/20

Answered by 1549442205PVT last updated on 27/Oct/20

Commented by 1549442205PVT last updated on 27/Oct/20

Given AB=AD=AE=DE=BC=a  AH=x.Put BF=y⇒y(x)=?  It is easy to see that ΔCDE is isosceles  at D with DC=DE=a,CDE^(�) =150°  DCE^(�) =DEC^(�) =15°.Since tan15°=2−(√3)  ,in the right triangle :DG=a(2−(√3))  CG=(√(CD^2 +DG^2 ))=(√(a^2 +a^2 (7−4(√3))))  =(√(a^2 (8−4(√3))))=2a(√(2−(√3)))  EDG^(�) =60° ⇒EG^2 =a^2 +a^2 (7−4(√3))−2a^2 (2−(√3))cos60  =a^2 (8−4(√3))−a^2 (2−(√3))=a^2 (6−3(√3))  ⇒EG=a(√(6−3(√3)))=a(√3)(√(2−(√3)))  ⇒CE=EG+CG=2a(√(2−(√3)))+a(√3).(√(2−(√3)))  CF=a−y,HG=a−x−DG=a((√3)−1)−x  HG//BC,so by Thalet′s therem we get  ((HG)/(CF))=((EG)/(CE))⇒((a((√3)−1)−x)/(a−y))=((a(√(6−3(√3))))/(a(2(√(2−(√3)))+(√3).(√(2−(√3))))))  =(((√3)((√(2−(√3)))))/((2+(√3))(√(2−(√3)))))=(1/(2+(√3)))=(√3)(2−(√3))  ⇒a−y=((a((√3)−1)−x)/(2(√3)−3))  y=a−((a((√3)−1)−x)/(2(√3)−3))=((a((√3)−2)+x)/(2(√3)−3))  (x/(2(√3)−3))+((a((√3)−2))/(2(√3)−3))=(((2(√3)+3)x)/3)−((a(√3))/3)  Thus y=(((2(√3)+3)x)/3)−((a(√3))/3)  Second way:  Construct the coordinate system XOY  so that A≡O,OX≡[AB),OY≡AD.Then  E(−((a(√3))/2),(a/2)),F(a,y).The equation  of the line pass through EF is  ((Y−(a/2))/(X+((a(√3))/2)))=((y−(a/2))/(a+((a(√3))/2)))⇒((2Y−a)/(2X+a(√3)))=((2y−a)/(2a+a(√3)))  The this line pass through H(0,x) so  (2a+a(√3))(2x−a)=(2y−a)a(√3)  ⇒(2+(√3))2x−a(2+(√3))+a(√3)=2y(√3)  ⇒y=((3+2(√3))/3)x−((a(√3))/3)

GivenAB=AD=AE=DE=BC=aAH=x.PutBF=yy(x)=?ItiseasytoseethatΔCDEisisoscelesatDwithDC=DE=a,CDE^=150°DCE^=DEC^=15°.Sincetan15°=23,intherighttriangle:DG=a(23)CG=CD2+DG2=a2+a2(743)=a2(843)=2a23EDG^=60°EG2=a2+a2(743)2a2(23)cos60=a2(843)a2(23)=a2(633)EG=a633=a323CE=EG+CG=2a23+a3.23CF=ay,HG=axDG=a(31)xHG//BC,sobyThaletstheremwegetHGCF=EGCEa(31)xay=a633a(223+3.23)=3(23)(2+3)23=12+3=3(23)ay=a(31)x233y=aa(31)x233=a(32)+x233x233+a(32)233=(23+3)x3a33Thusy=(23+3)x3a33Secondway:ConstructthecoordinatesystemXOYsothatAO,OX[AB),OYAD.ThenE(a32,a2),F(a,y).TheequationofthelinepassthroughEFisYa2X+a32=ya2a+a322Ya2X+a3=2ya2a+a3ThethislinepassthroughH(0,x)so(2a+a3)(2xa)=(2ya)a3(2+3)2xa(2+3)+a3=2y3y=3+233xa33

Commented by talminator2856791 last updated on 27/Oct/20

 do your two answers simplify to the same thing?

doyourtwoanswerssimplifytothesamething?

Commented by talminator2856791 last updated on 27/Oct/20

i see you used geogebra instead of this  fantastic software

iseeyouusedgeogebrainsteadofthisfantasticsoftware

Commented by 1549442205PVT last updated on 27/Oct/20

Yes,it is right

Yes,itisright

Commented by I want to learn more last updated on 27/Oct/20

Wow, i appreciate sir.

Wow,iappreciatesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com