All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 119930 by Lordose last updated on 28/Oct/20
Answered by mathmax by abdo last updated on 28/Oct/20
A=∫01arcsin(tanθ)dθwedothechangementarcsin(tanθ)=x⇒tanθ=sinx⇒θ=artan(sinx)⇒A=∫0arcsin(tan1)x×cosx1+sin2xdx⇒A=tan(x2)=t∫0tan(arcsin(tan1)2)2arctant×1−t21+t21+4t2(1+t2)2×2dt1+t2=4∫0c(1−t2)arctant(1+t2)2(1+4t2(1+t2)2)dt=4∫0c(1−t2)arctant(1+t2)2+4t2dt=4∫0c(1−t2)arctan(t)t4+2t2+1+4t2dt=4∫0c(1−t2)arctan(t)t4+6t2+1dtletφ(a)=∫0c(1−t2)arctan(at)t4+6t2+1dt(c=tan(arcsin(tan1)2))φ′(a)=∫0ct(1−t2)(1+a2t2)(t4+6t2+1)dt=at=z∫0czza(1−z2a2)(1+z2)(z4a4+6z2a2+1)dza=∫0czz(a2−z2)(1+z2)(z4+6a2z2+a4)dzletdecomposeF(z)=z(a2−z2)(z2+1)(z4+6a2z2+a4)z4+6a2z2+a4=0→Δ′=(3a2)2−a4=8a4⇒z12=−3a2+22a21=(22−3a)a2⇒z1=+−i3a−22z12=−3a2−22a21⇒z2=+−i3a+22.....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com