Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119930 by Lordose last updated on 28/Oct/20

Answered by mathmax by abdo last updated on 28/Oct/20

A =∫_0 ^1  arcsin(tanθ)dθ  we do the changement  arcsin(tanθ)=x ⇒tanθ =sinx ⇒θ =artan(sinx) ⇒  A =∫_0 ^(arcsin(tan1))  x ×((cosx)/(1+sin^2 x))dx ⇒ A =_(tan((x/2))=t)  ∫_0 ^(tan(((arcsin(tan1))/2))) ((2arctant×((1−t^2 )/(1+t^2 )))/(1+((4t^2 )/((1+t^2 )^2 ))))×((2dt)/(1+t^2 ))  =4∫_0 ^c      (((1−t^2 )arctant)/((1+t^2 )^2 (1+((4t^2 )/((1+t^2 )^2 )))))dt =4∫_0 ^c  (((1−t^2 )arctant)/((1+t^2 )^2 +4t^2 ))dt  =4∫_0 ^c   (((1−t^2 )arctan(t))/(t^4 +2t^2 +1+4t^2 ))dt =4∫_0 ^c  (((1−t^2 )arctan(t))/(t^4  +6t^2 +1))dt  let ϕ(a) =∫_0 ^c  (((1−t^2 )arctan(at))/(t^4  +6t^2  +1))dt   (c=tan(((arcsin(tan1))/2)))  ϕ^′ (a) =∫_0 ^c   ((t(1−t^2 ))/((1+a^2 t^2 )(t^4 +6t^2  +1)))dt  =_(at =z)     ∫_0 ^(cz)    (((z/a)(1−(z^2 /a^2 )))/((1+z^2 )((z^4 /a^4 ) +6(z^2 /a^2 ) +1)))(dz/a)  =∫_0 ^(cz)    ((z(a^2 −z^2 ))/((1+z^2 )(z^4  +6a^2 z^2  +a^4 ))) dz  let decompose  F(z) =((z(a^2 −z^2 ))/((z^2 +1)(z^4  +6a^2 z^2  +a^4 )))  z^4  +6a^2 z^2  +a^4  =0→Δ^′  =(3a^2 )^2 −a^4  =8a^4  ⇒  z_1 ^2 =((−3a^2 +2(√2)a^2 )/1) =(2(√2)−3a)a^2  ⇒z_1 =+^− i(√(3a−2(√2)))  z_1 ^2  =((−3a^2 −2(√2)a^2 )/1)  ⇒z_2 =+^− i(√(3a+2(√2))) .....be continued...

A=01arcsin(tanθ)dθwedothechangementarcsin(tanθ)=xtanθ=sinxθ=artan(sinx)A=0arcsin(tan1)x×cosx1+sin2xdxA=tan(x2)=t0tan(arcsin(tan1)2)2arctant×1t21+t21+4t2(1+t2)2×2dt1+t2=40c(1t2)arctant(1+t2)2(1+4t2(1+t2)2)dt=40c(1t2)arctant(1+t2)2+4t2dt=40c(1t2)arctan(t)t4+2t2+1+4t2dt=40c(1t2)arctan(t)t4+6t2+1dtletφ(a)=0c(1t2)arctan(at)t4+6t2+1dt(c=tan(arcsin(tan1)2))φ(a)=0ct(1t2)(1+a2t2)(t4+6t2+1)dt=at=z0czza(1z2a2)(1+z2)(z4a4+6z2a2+1)dza=0czz(a2z2)(1+z2)(z4+6a2z2+a4)dzletdecomposeF(z)=z(a2z2)(z2+1)(z4+6a2z2+a4)z4+6a2z2+a4=0Δ=(3a2)2a4=8a4z12=3a2+22a21=(223a)a2z1=+i3a22z12=3a222a21z2=+i3a+22.....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com