All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 119934 by bramlexs22 last updated on 28/Oct/20
∫sin8x−cos8x1−12sin22xdx
Answered by bobhans last updated on 28/Oct/20
∫(sin4x−cos4x)(sin4x+cos4x)1−2sin2xcos2xdx=∫(1−2sin2xcos2x)(1)(sin2x−cos2x)1−2sin2xcos2xdx∫−cos2xdx=−12sin2x+C=−sinxcosx+C
Answered by mathmax by abdo last updated on 28/Oct/20
A=∫sin8x−cos8x1−12sin2(2x)dx⇒A=∫(sin4x)2−(cos4x)21−12sin2(2x)dx=∫(sin4x−cos4x)(sin4x+cos4x)1−12sin2(2x)dx=∫(sin2x−cos2x)(1)(1−2sin2xcos2x)1−12sin2(2x)dx=∫(sin2x−cos2x)(1−12sin2(2x))1−12sin2(2x)dx=−∫cos(2x)=−12sin(2x)+C=−sinxcosx+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com