Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 119937 by bobhans last updated on 28/Oct/20

 (i)((1/2)−cos (π/7))((1/2)−cos ((3π)/7))((1/2)−cos ((9π)/7))?  (ii) ((√3)+tan 1°)((√3)+tan 2°)((√3)+tan 3°)×...×((√3)+tan 29°)?

(i)(12cosπ7)(12cos3π7)(12cos9π7)?(ii)(3+tan1°)(3+tan2°)(3+tan3°)×...×(3+tan29°)?

Answered by TANMAY PANACEA last updated on 28/Oct/20

ii) (√3) +tan1^o   =tan60^o +tan1^o   =((sin60cos1+cos6osin1)/(cos60cos1))=((sin(61))/(cos60cos1))  now  p=((sin61×sin62×sin63×...×sin89)/((cos60)^(29) cos1cos2cos3...cos29))  =2^(29)     =

ii)3+tan1o=tan60o+tan1o=sin60cos1+cos6osin1cos60cos1=sin(61)cos60cos1nowp=sin61×sin62×sin63×...×sin89(cos60)29cos1cos2cos3...cos29=229=

Answered by TANMAY PANACEA last updated on 28/Oct/20

7θ=π  cos3θ=cos(π−4θ)  4cos^3 θ−3cosθ=−(2cos^2 2θ−1)  4cos^3 θ−3cosθ=−2(2cos^2 θ−1)^2 +1  4c^3 −3c=−2(4c^4 −4c^2 +1)+1  4c^3 −3c=−8c^4 +8c^2 −2+1  8c^4 +4c^3 −8c^2 −3c+1=0  ⇛8c^4 +8c^3 −4c^3 −4c^2 −4c^2 −4c+c+1=0  ⇛8c^3 (c+1)−4c^2   (c+1) −4c (c+1)+1 (c+1)=0  ⇛(c+1)(8c^3 −4c^2 −4c+1)=0  given problem  (a−c_1 )(a−c_2 )(a−c_3 )  a^3 −a^2 (c_1 +c_2 +c_3 )+a(c_1 c_2 +c_2 c_3 +c_1 c_3 )−c_1 c_2 c_3   a=(1/2)  c_1 =cos(π/(7 ))  c_2 =cos((3π)/7)   c_3 =cos((9π)/7)  cos(π/7),cos((3π)/7)and cos((9π)/7) satisfy eqn  8c^3 −4c^2 −4c+1=0  So answer is  c_1 +c_2 +c_3 =((−(−4))/8)  c_1 c_2 +c_2 c_3 +c_1 c_3 =((−4)/8)  c_1 c_2 c_3 =((−1)/8)  so answer is  a^3 −a^2 (c_1 +c_2 +c_3 )+a(c_1 c_2 +c_2 c_3 +c_1 c_3 )−c_1 c_2 c_3   =(1/8)−(1/4)((1/2))+(1/2)(((−1)/2))−(((−1)/8))  =(1/8)−(1/8)−(1/4)+(1/8)  =((1−2)/8)=((−1)/8)  pls chk

7θ=πcos3θ=cos(π4θ)4cos3θ3cosθ=(2cos22θ1)4cos3θ3cosθ=2(2cos2θ1)2+14c33c=2(4c44c2+1)+14c33c=8c4+8c22+18c4+4c38c23c+1=08c4+8c34c34c24c24c+c+1=08c3(c+1)4c2(c+1)4c(c+1)+1(c+1)=0(c+1)(8c34c24c+1)=0givenproblem(ac1)(ac2)(ac3)a3a2(c1+c2+c3)+a(c1c2+c2c3+c1c3)c1c2c3a=12c1=cosπ7c2=cos3π7c3=cos9π7cosπ7,cos3π7andcos9π7satisfyeqn8c34c24c+1=0Soanswerisc1+c2+c3=(4)8c1c2+c2c3+c1c3=48c1c2c3=18soanswerisa3a2(c1+c2+c3)+a(c1c2+c2c3+c1c3)c1c2c3=1814(12)+12(12)(18)=181814+18=128=18plschk

Commented by Dwaipayan Shikari last updated on 28/Oct/20

Yes it is correct sir!

Yesitiscorrectsir!

Commented by TANMAY PANACEA last updated on 28/Oct/20

thank you

thankyou

Answered by bemath last updated on 28/Oct/20

(ii) ((√3)+tan 1°)((√3)+tan 29°)=3+(√3)(tan 29°+tan 1°)+tan 29°.tan 1°   = 3+(√3) (tan 30°)(1−tan 29°tan 1°)+tan 29°.tan 1°   = 3+1 = 4  similarly ((√3)+tan 2°)((√3)+tan 28°)=4  therefore we have  =(4)(4)×...(4)×((√3) +tan 15°)  = 2^(28) ×((√3)+((1−(1/( (√3))))/(1+(1/( (√3)))))) = 2^(28) ×((√3)+(((√3)−1)/( (√3)+1)))  = 2^(28) ×((√3)+((4−2(√3))/2))=2^(28) ×((√3)+2−(√3))  = 2^(29)

(ii)(3+tan1°)(3+tan29°)=3+3(tan29°+tan1°)+tan29°.tan1°=3+3(tan30°)(1tan29°tan1°)+tan29°.tan1°=3+1=4similarly(3+tan2°)(3+tan28°)=4thereforewehave=(4)(4)×...(4)×(3+tan15°)=228×(3+1131+13)=228×(3+313+1)=228×(3+4232)=228×(3+23)=229

Terms of Service

Privacy Policy

Contact: info@tinkutara.com