Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119970 by bramlexs22 last updated on 28/Oct/20

 ∫ (dx/(x^2 (√(25−x^2 )))) ?

$$\:\int\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:? \\ $$

Answered by bemath last updated on 28/Oct/20

 ∫ (dx/(x^3 (√(((25)/x^2 )−1)))) dx = ∫ (x^(−3) /( (√(25x^(−2) −1)))) dx  letting m = 25x^(−2) −1⇒dm = −50x^(−3) dx  ∫ ((−(dm/(50)))/( (√m))) = −(1/(50))∫ m^(−(1/2)) dm  = −(1/(25))(√m) + c = −(1/(25))(√(25x^(−2) −1))+c  =−((√(25−x^2 ))/(25x)) + c

$$\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \sqrt{\frac{\mathrm{25}}{{x}^{\mathrm{2}} }−\mathrm{1}}}\:{dx}\:=\:\int\:\frac{{x}^{−\mathrm{3}} }{\:\sqrt{\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}}}\:{dx} \\ $$$${letting}\:{m}\:=\:\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}\Rightarrow{dm}\:=\:−\mathrm{50}{x}^{−\mathrm{3}} {dx} \\ $$$$\int\:\frac{−\frac{{dm}}{\mathrm{50}}}{\:\sqrt{{m}}}\:=\:−\frac{\mathrm{1}}{\mathrm{50}}\int\:{m}^{−\frac{\mathrm{1}}{\mathrm{2}}} {dm} \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{25}}\sqrt{{m}}\:+\:{c}\:=\:−\frac{\mathrm{1}}{\mathrm{25}}\sqrt{\mathrm{25}{x}^{−\mathrm{2}} −\mathrm{1}}+{c} \\ $$$$=−\frac{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}{\mathrm{25}{x}}\:+\:{c}\: \\ $$

Answered by Dwaipayan Shikari last updated on 28/Oct/20

∫(dx/(25sin^2 θ(√(25−25sin^2 θ))))          x=5sinθ⇒1=5cosθ(dθ/dx)  =∫((5cosθdθ)/(25sin^2 θ.5cosθ))  =(1/(25))∫(1/(sin^2 θ))  =−(1/(25))(tanθ)^(−1) =−(1/(25))(.((sinθ)/( (√(1−sin^2 θ)))))^(−1) =−(1/(25))(.((5x)/(5(√(25−x^2 )))))^(−1) =−(1/(25)).((x/( (√(25−x^2 )))))^(−1) +C  =−(1/(25))(((√(25−x^2 ))/x))+C

$$\int\frac{{dx}}{\mathrm{25}{sin}^{\mathrm{2}} \theta\sqrt{\mathrm{25}−\mathrm{25}{sin}^{\mathrm{2}} \theta}}\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{5}{sin}\theta\Rightarrow\mathrm{1}=\mathrm{5}{cos}\theta\frac{{d}\theta}{{dx}} \\ $$$$=\int\frac{\mathrm{5}{cos}\theta{d}\theta}{\mathrm{25}{sin}^{\mathrm{2}} \theta.\mathrm{5}{cos}\theta} \\ $$$$=\frac{\mathrm{1}}{\mathrm{25}}\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \theta} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{25}}\left({tan}\theta\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}\left(.\frac{{sin}\theta}{\:\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \theta}}\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}\left(.\frac{\mathrm{5}{x}}{\mathrm{5}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{25}}.\left(\frac{{x}}{\:\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\right)^{−\mathrm{1}} +{C} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{25}}\left(\frac{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}{{x}}\right)+{C} \\ $$

Commented by bemath last updated on 28/Oct/20

cot θ = ((cos θ)/( (√(1−cos^2 θ))))

$$\mathrm{cot}\:\theta\:=\:\frac{\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta}} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Oct/20

I suppose it as tanθ   typo  Thanking for correction

$${I}\:{suppose}\:{it}\:{as}\:{tan}\theta\:\:\:{typo} \\ $$$${Thanking}\:{for}\:{correction} \\ $$

Answered by Bird last updated on 28/Oct/20

I =∫ x^(−2) (25−x^2 )^(−(1/2)) dx by parts  I =−(1/x)(25−x^2 )^(−(1/2)) −∫−(1/x)(−(1/2))(−2x)(25−x^2 )^(−(3/2))   =−(1/(x(√(25−x^2 ))))+∫  (dx/((25−x^2 )(√(25−x^2 ))))  ∫   (dx/((25−x^2 )(√(25−x^2 ))))=_(x=5sint)   =∫   ((5cost dt)/(25 cos^2 t .5.cost))  =(1/(25))∫  (dt/((1+cos(2t))/2)) =(2/(25))∫  (dt/(1+cos(2t)))  =_(tant =u)     (2/(25))∫  (du/((1+u^2 )(1+((1−u^2 )/(1+u^2 )))))  =(2/(25))∫  (du/(1+u^2 +1−u^2 )) =(1/(25))∫ du  =(u/(25))+c =tan( arcsin((x/5)))+c ⇒  I =−(1/(x(√(25−x^2 )))) +tan(arcsin((x/5))+C

$${I}\:=\int\:{x}^{−\mathrm{2}} \left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:{by}\:{parts} \\ $$$${I}\:=−\frac{\mathrm{1}}{{x}}\left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} −\int−\frac{\mathrm{1}}{{x}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\mathrm{2}{x}\right)\left(\mathrm{25}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}+\int\:\:\frac{{dx}}{\left(\mathrm{25}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }} \\ $$$$\int\:\:\:\frac{{dx}}{\left(\mathrm{25}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}=_{{x}=\mathrm{5}{sint}} \\ $$$$=\int\:\:\:\frac{\mathrm{5}{cost}\:{dt}}{\mathrm{25}\:{cos}^{\mathrm{2}} {t}\:.\mathrm{5}.{cost}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{25}}\int\:\:\frac{{dt}}{\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}}\:=\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{dt}}{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)} \\ $$$$=_{{tant}\:={u}} \:\:\:\:\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{25}}\int\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} +\mathrm{1}−{u}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{25}}\int\:{du} \\ $$$$=\frac{{u}}{\mathrm{25}}+{c}\:={tan}\left(\:{arcsin}\left(\frac{{x}}{\mathrm{5}}\right)\right)+{c}\:\Rightarrow \\ $$$${I}\:=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:+{tan}\left({arcsin}\left(\frac{{x}}{\mathrm{5}}\right)+{C}\right. \\ $$

Commented by Bird last updated on 28/Oct/20

I =−(1/(x(√(25−x^2 )))) +(1/(25))arctan(arcsin((x/5))) +C

$${I}\:=−\frac{\mathrm{1}}{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}\:+\frac{\mathrm{1}}{\mathrm{25}}{arctan}\left({arcsin}\left(\frac{{x}}{\mathrm{5}}\right)\right)\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com