Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119989 by mnjuly1970 last updated on 28/Oct/20

Answered by mathmax by abdo last updated on 28/Oct/20

∫_0 ^∞   ((xdx)/(2e^x −1)) =∫_0 ^∞   ((xe^(−x) dx)/(2−e^(−x) )) =(1/2)∫_0 ^∞   ((xe^(−x) )/(1−2^(−1) e^(−x) ))  =(1/2)∫_0 ^∞  xe^(−x) Σ_(n=0) ^∞ ((e^(−x) /2))^n  =(1/2) Σ_(n=0) ^∞  (1/2^n )∫_0 ^∞  xe^(−(n+1)x) dx  =_((n+1)x=t)    (1/2)Σ_(n=0) ^∞  (1/2^n )∫_0 ^∞  (t/(n+1))e^(−t) (dt/(n+1))  =(1/2)Σ_(n=0) ^∞ (1/((n+1)^2 2^n ))∫_0 ^∞  t e^(−t) dt  =(1/2)Σ_(n=0) ^∞  (1/((n+1)^2 2^n ))Γ(2)   (Γ(2)=1)  =(1/2)Σ_(n=1) ^∞  (1/(n^2 2^(n−1) )) =Σ_(n=1) ^∞  (1/(n^2 ×2^n )).....be continued...

0xdx2ex1=0xexdx2ex=120xex121ex=120xexn=0(ex2)n=12n=012n0xe(n+1)xdx=(n+1)x=t12n=012n0tn+1etdtn+1=12n=01(n+1)22n0tetdt=12n=01(n+1)22nΓ(2)(Γ(2)=1)=12n=11n22n1=n=11n2×2n.....becontinued...

Commented by mnjuly1970 last updated on 29/Oct/20

grateful  mr  max.excellent...    Σ_(n=1) ^∞ (1/(2^n n^2 )) =li_2 ((1/2)) ✓

gratefulmrmax.excellent...n=112nn2=li2(12)

Commented by Bird last updated on 29/Oct/20

you are welcome

youarewelcome

Answered by mindispower last updated on 30/Oct/20

∫_0 ^∞ ((ln^2 (x)ln(x+1))/(x(x+1)))dx  =∫_0 ^1 ((ln^2 (x)ln(1+x))/(x(x+1)))+∫_1 ^∞ ((ln^2 (x)ln(1+x))/(x(x+1)))dx_(x→(1/x))   =∫_0 ^1 ((ln^2 (x)ln(1+x)(x+1−x))/(x(x+1)))dx+∫_0 ^1 ((ln^2 (x)ln(1+(1/x)))/(1+x))dx  =∫_0 ^1 ((ln^2 (x)ln(1+x))/x)dx−∫_0 ^1 ((ln^2 (x)ln(1+x))/(1+x))dx  +∫_0 ^1 ((ln^2 (x)ln(1+x))/(1+x))dx−∫_0 ^1 ((ln^3 (x))/(1+x))dx  =∫_0 ^1 ((ln^2 (x)ln(1+x)dx)/x)−∫_0 ^1 ((ln^3 (x))/(1+x))  =[((ln^3 (x)ln(1+x))/3)]_0 ^1 −∫_0 ^1 ((ln^3 (x))/(3(1+x)))dx−∫_0 ^1 ((ln^3 (x))/(1+x))dx  =(4/3)∫_0 ^1 (((−ln(x))^3 )/(1+x))dx_(x=e^(−t) )   =(4/3)∫_0 ^∞ (t^3 /(1+e^(−t) ))e^(−t) dt=(4/3)Σ_(k≥0) ∫_0 ^∞ t^3 e^(−(1+k)t) dt  =(4/3)Σ_(k≥0) ∫_0 ^∞ (−1)^k ((t^3 e^(−t) dt)/((1+k)^4 ))  =(4/3)Σ_(k≥0) (((−1)^k )/((1+k)^4 ))Γ(4)=8Σ_(k≥0) (((−1)^k )/((1+k)^4 ))  8(Σ_(k≥0) (1/((2k+1)^4 ))−Σ_(k≥0) (1/((2k+2)^4 )))=8(ζ(4)−(1/(16))ζ(4)−((ζ(4))/(16)))  =8.((14)/(16))ζ(4)=7ζ(5)

0ln2(x)ln(x+1)x(x+1)dx=01ln2(x)ln(1+x)x(x+1)+1ln2(x)ln(1+x)x(x+1)dxx1x=01ln2(x)ln(1+x)(x+1x)x(x+1)dx+01ln2(x)ln(1+1x)1+xdx=01ln2(x)ln(1+x)xdx01ln2(x)ln(1+x)1+xdx+01ln2(x)ln(1+x)1+xdx01ln3(x)1+xdx=01ln2(x)ln(1+x)dxx01ln3(x)1+x=[ln3(x)ln(1+x)3]0101ln3(x)3(1+x)dx01ln3(x)1+xdx=4301(ln(x))31+xdxx=et=430t31+etetdt=43k00t3e(1+k)tdt=43k00(1)kt3etdt(1+k)4=43k0(1)k(1+k)4Γ(4)=8k0(1)k(1+k)48(k01(2k+1)4k01(2k+2)4)=8(ζ(4)116ζ(4)ζ(4)16)=8.1416ζ(4)=7ζ(5)

Commented by mnjuly1970 last updated on 30/Oct/20

bravo mr mindspower    very nice as always..  thank you...

bravomrmindspowerveryniceasalways..thankyou...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com