Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119997 by behi83417@gmail.com last updated on 28/Oct/20

solve for x,a∈R.  (√(x^2 +ax+a^2 ))+(√(x^2 −ax+a^2 ))=1

solveforx,aR.x2+ax+a2+x2ax+a2=1

Answered by Lordose last updated on 28/Oct/20

x^2 +ax+a^2  = 1 − 2(√(x^2 −ax+a^2 )) + x^2 −ax^2 +a^2   2(√(x^2 −ax+a^2 )) = 1−x^2 −ax−a^2 +x^2 −ax+a^2   4(x^2 −ax+a^2 ) = (1−2ax)^2   4x^2 −4ax+4a^2  = 1 − 4ax + 4a^2 x^2   (4−4a^2 )x^2  + 4a^2  = 1  x^2  = ((1−4a^2 )/((4−4a^2 )))  x = ±((√(1−4a^2 ))/(2(√(1−a^2 ))))

x2+ax+a2=12x2ax+a2+x2ax2+a22x2ax+a2=1x2axa2+x2ax+a24(x2ax+a2)=(12ax)24x24ax+4a2=14ax+4a2x2(44a2)x2+4a2=1x2=14a2(44a2)x=±14a221a2

Commented by behi83417@gmail.com last updated on 28/Oct/20

thank you very much sir.

thankyouverymuchsir.

Answered by TANMAY PANACEA last updated on 28/Oct/20

x^2 +ax+a^2 =1+x^2 −ax+a^2 −2(√(x^2 −ax+a^2 ))  (2ax−1)^2 =4(x^2 −ax+a^2 )  4a^2 x^2 −4ax+1−4x^2 +4ax−4a^2 =0  4x^2 (a^2 −1)=4a^2 −1  x=±(√((4a^2 −1)/(4(a^2 −1))))

x2+ax+a2=1+x2ax+a22x2ax+a2(2ax1)2=4(x2ax+a2)4a2x24ax+14x2+4ax4a2=04x2(a21)=4a21x=±4a214(a21)

Commented by behi83417@gmail.com last updated on 28/Oct/20

thanks in advance sir!

thanksinadvancesir!

Commented by TANMAY PANACEA last updated on 28/Oct/20

most welcome sir

mostwelcomesir

Answered by behi83417@gmail.com last updated on 28/Oct/20

x^2 +ax+a^2 =u^2 ,x^2 −ax+a^2 =v^2   ⇒ { ((u+v=1)),((u^2 −v^2 =2ax)) :}⇒u−v=2ax  ⇒(u+v)^2 −4uv=(2ax)^2   ⇒uv=((1−4a^2 x^2 )/4),u+v=1  ⇒z^2 −z+((1−4a^2 x^2 )/4)=0  ⇒z=((1±(√(1−(1−4a^2 x^2 ))))/2)=((1±2ax)/2)  ⇒(√(x^2 +ax+a^2 ))=((1±2ax)/2)⇒  4(x^2 +ax+a^2 )=1±4ax+4a^2 x^2   ⇒ { ((4(1−a^2 )x^2 =1−4a^2 ⇒x=±(1/2).(√((1−4a^2 )/(1−a^2 ))))),((4x^2 +4ax+4a^2 =1−4ax+4a^2 x^2 ⇒)) :}  ⇒4(1−a^2 )x^2 +8ax+4a^2 −1=0⇒  ⇒x=((−4a±(√(16a^2 −4(1−a^2 )(4a^2 −1))))/(4(1−a^2 )))=  =((−2a±(√(4a^2 −(4a^2 −1−4a^4 +a^2 ))))/(2(1−a^2 )))=  =((2a±(√(4a^4 −a^2 +1)))/(2(a^2 −1)))    .■

x2+ax+a2=u2,x2ax+a2=v2{u+v=1u2v2=2axuv=2ax(u+v)24uv=(2ax)2uv=14a2x24,u+v=1z2z+14a2x24=0z=1±1(14a2x2)2=1±2ax2x2+ax+a2=1±2ax24(x2+ax+a2)=1±4ax+4a2x2{4(1a2)x2=14a2x=±12.14a21a24x2+4ax+4a2=14ax+4a2x24(1a2)x2+8ax+4a21=0x=4a±16a24(1a2)(4a21)4(1a2)==2a±4a2(4a214a4+a2)2(1a2)==2a±4a4a2+12(a21).

Answered by MJS_new last updated on 29/Oct/20

for a=0 we get x=±(1/2)  for a=±(1/2) we get x=0  for a<−(1/2)∨a>(1/2) we get no solution for x∈C  ⇒ −(1/2)≤a≤(1/2)∧−(1/2)≤x≤(1/2)  ⇒ let a=(1/2)sin α ∧α∈R  ⇒ x=±((cos α)/( (√(3+cos^2  α))))  parametric solution is  { ((a=(1/2)sin α)),((x=±((cos α)/( (√(3+cos^2  α)))))) :}∧α∈R  or with t=tan (α/2)  { ((a=(t/(t^2 +1)))),((x=±((t^2 −1)/(2(√(t^4 +t^2 +1)))))) :}∧t∈R  or solution is x=±((√(1−4a^2 ))/(2(√(1−a^2 ))))∧−(1/2)≤a≤(1/2)

fora=0wegetx=±12fora=±12wegetx=0fora<12a>12wegetnosolutionforxC12a1212x12leta=12sinααRx=±cosα3+cos2αparametricsolutionis{a=12sinαx=±cosα3+cos2ααRorwitht=tanα2{a=tt2+1x=±t212t4+t2+1tRorsolutionisx=±14a221a212a12

Commented by behi83417@gmail.com last updated on 29/Oct/20

thank you very much dear proph:MJS  please let me know what you think  about my answer.

thankyouverymuchdearproph:MJSpleaseletmeknowwhatyouthinkaboutmyanswer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com