All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120025 by mathmax by abdo last updated on 28/Oct/20
calculatef′(x)1)f(x)=∫0∞cos(xt)t2+x2dt2)f(x)=∫0∞sin(xt2+2)t2+x2+3dt
Answered by Bird last updated on 29/Oct/20
1)f(x)=t=xu∫0∞cos(x2u)x2(u2+1)xdu=1x∫0∞cos(x2u)u2+1du(wetskex>0)=12xRe(∫−∞∞eix2uu2+1du)∫−∞∞eix2zz2+1dz=2iπRes(f,i)f(z)=eix2z(z−i)(z+i)⇒Res(f,i)=e−x22i⇒∫−∞+∞eix2zz2+1dz=2iπ.e−x22i=πe−x2⇒f(x)=π2xe−x2⇒f′(x)=π2{−1x2e−x2+1x(−2x)e−x2}=π2{−1x2e−x2−2e−x2}=−π2{1x2+2}e−x2=−π×1+2x22x2e−x2
2)f(x)=∫0∞sin(xt2+2)t2+x2+3dt⇒f(x)=12∫−∞+∞sin(xt2+2)t2+x2+3dt=12Im(∫−∞+∞ei(xt2+2)t2+x2+3dt)g(z)=ei(xz2+2)z2+x2+3⇒g(z)=ei(xz2+2)(z−ix2+3)(z+ix2+3)∫−∞+∞g(x)dz=2iπRes(g,ix2+3)=2iπ×ei(x(−x2−3)+2)2ix2+3=πx2+3.ei(−x3−3x+2)=πx2+3{cos(−x3−3x+2)+isin(−x3−3x+2)}⇒f(x)=π2x2+3sin(−x3−3x+2)=−π2x2+3sin(x3+3x−2)f(x)=−π2(x2+3)−12sin(x3+3x−2)⇒f′(x)=−π2{−x(x2+3)−32sin(x3+3x−2)+(x2+3)−12(3x2+3)cos(x3+3x−2)}f′(x)=−π2{−x(x2+3)x2+3sin(x3+3x−2)+3x2+3x2+3cos(x3+3x+2)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com