Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120035 by I want to learn more last updated on 28/Oct/20

Answered by ebi last updated on 29/Oct/20

y=2x−12......(1)  y=px^2 −4px−5p......(2)  Substitute (1) into (2)  2x−12=px^2 −4px−5p  px^2 −2(2p+1)x−(5p−12)=0......(3)  a=p    b=−2(2p+1)    c=−(5p−12)  (a)  Since (3) doesnt have real roots,  the discriminant <0  b^2 −4ac<0  [−2(2p+1)]^2 −4(p)[−(5p−12)]<0  4(4p^2 +4p+1)+4p(5p−12)]<0  16p^2 +16p+4+20p^2 −48p<0  36p^2 −32p+4<0  9p^2 −8p+1<0 (shown)    (b)  9p^2 −8p+1<0  p^2 −(8/9)p<−(1/9)  p^2 −(8/9)p+(−(4/9))^2 <−(1/9)+(−(4/9))^2   (p−(4/9))^2 <(7/(81))    p−(4/9)<((√7)/9)   or     p−(4/9)>−((√7)/9)  p<((4+(√7))/9)     or      p>((4−(√7))/9)  p<0.7384  or     p>0.1505    ∴the range is 0.1505<p<0.7384

y=2x12......(1)y=px24px5p......(2)Substitute(1)into(2)2x12=px24px5ppx22(2p+1)x(5p12)=0......(3)a=pb=2(2p+1)c=(5p12)(a)Since(3)doesnthaverealroots,thediscriminant<0b24ac<0[2(2p+1)]24(p)[(5p12)]<04(4p2+4p+1)+4p(5p12)]<016p2+16p+4+20p248p<036p232p+4<09p28p+1<0(shown)(b)9p28p+1<0p289p<19p289p+(49)2<19+(49)2(p49)2<781p49<79orp49>79p<4+79orp>479p<0.7384orp>0.1505therangeis0.1505<p<0.7384

Commented by I want to learn more last updated on 29/Oct/20

Thanks sir

Thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com