Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 120044 by john santu last updated on 28/Oct/20

Given a_(n+1)  = ((2a_n )/((2n+1)(2n+2)))  find a_n .

$${Given}\:{a}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{2}{a}_{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)} \\ $$$${find}\:{a}_{{n}} . \\ $$

Answered by Olaf last updated on 29/Oct/20

Let v_k  = (a_(k+1) /a_k ) = (2/((2k+1)(2k+2)))  Π_(k=0) ^n v_k  = Π_(k=0) ^n (a_(k+1) /a_k ) = (a_(n+1) /a_0 )  (telescopic product)  and Π_(k=0) ^n v_k  = Π_(k=0) ^n (2/((2k+1)(2k+2)))  Π_(k=0) ^n v_k  = (2^(n+1) /((1.2)(3.4)(5.6)...(2n+1)(2n+2)))  Π_(k=0) ^n v_k  = (2^(n+1) /((2n+2)!))  ⇒ a_(n+1)  = a_0 (2^(n+1) /((2n+2)!))  and a_n  = a_0 (2^n /((2n)!))

$$\mathrm{Let}\:{v}_{{k}} \:=\:\frac{{a}_{{k}+\mathrm{1}} }{{a}_{{k}} }\:=\:\frac{\mathrm{2}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{v}_{{k}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\frac{{a}_{{k}+\mathrm{1}} }{{a}_{{k}} }\:=\:\frac{{a}_{{n}+\mathrm{1}} }{{a}_{\mathrm{0}} } \\ $$$$\left(\mathrm{telescopic}\:\mathrm{product}\right) \\ $$$$\mathrm{and}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{v}_{{k}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\frac{\mathrm{2}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{v}_{{k}} \:=\:\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{1}.\mathrm{2}\right)\left(\mathrm{3}.\mathrm{4}\right)\left(\mathrm{5}.\mathrm{6}\right)...\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{v}_{{k}} \:=\:\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)!} \\ $$$$\Rightarrow\:{a}_{{n}+\mathrm{1}} \:=\:{a}_{\mathrm{0}} \frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)!} \\ $$$$\mathrm{and}\:{a}_{{n}} \:=\:{a}_{\mathrm{0}} \frac{\mathrm{2}^{{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$ \\ $$

Commented by bramlexs22 last updated on 29/Oct/20

what the value of a_0  sir?

$${what}\:{the}\:{value}\:{of}\:{a}_{\mathrm{0}} \:{sir}? \\ $$

Commented by Olaf last updated on 29/Oct/20

It′s impossible to know.  It is not given in the problem.  a_0  is simply the first term in the  sequence.

$$\mathrm{It}'\mathrm{s}\:\mathrm{impossible}\:\mathrm{to}\:\mathrm{know}. \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{not}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{problem}. \\ $$$${a}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{simply}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{sequence}. \\ $$

Answered by Bird last updated on 29/Oct/20

(a_(n+1) /a_n )=(1/((2n+1)(2n+2))) ⇒  Π_(k=0) ^(n−1)  (a_(k+1) /a_k ) =Π_(k=0) ^(n−1)   (1/((2k+1)(2k+2))) ⇒  (a_1 /a_0 )×(a_2 /a_1 )×....×(a_n /a_(n−1) )=(1/(Π_(k=0) ^(n−1) (2k+1)Π_(k=0) ^(n−1) (2k+2)))  ⇒ a_n =a_0 ×(1/(Π_(k=0) ^(n−1) (2k+1)Π_(k=0) ^(n−1) (2k+2)))  but  Π_(k=0) ^(n−1) (2k+1)=1.3.5...(2n−1)  =1.2.3.4.5.....(2n−1).2n×(1/(2.4...(2n)))  =(((2n)!)/(2^n n!)) also  Π_(k=0) ^(n−1) (2k+2) =Π_(k=1) ^n (2k)  =2^n n! ⇒  a_n =a_0 .((2^n n!)/((2n)!)).(1/(2^n n!)) ⇒a_n =(a_o /((2n)!))

$$\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }=\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)}\:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{{a}_{{k}+\mathrm{1}} }{{a}_{{k}} }\:=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)}\:\Rightarrow \\ $$$$\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{0}} }×\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }×....×\frac{{a}_{{n}} }{{a}_{{n}−\mathrm{1}} }=\frac{\mathrm{1}}{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$$\Rightarrow\:{a}_{{n}} ={a}_{\mathrm{0}} ×\frac{\mathrm{1}}{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$${but}\:\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{1}\right)=\mathrm{1}.\mathrm{3}.\mathrm{5}...\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$$$=\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}.....\left(\mathrm{2}{n}−\mathrm{1}\right).\mathrm{2}{n}×\frac{\mathrm{1}}{\mathrm{2}.\mathrm{4}...\left(\mathrm{2}{n}\right)} \\ $$$$=\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{{n}} {n}!}\:{also} \\ $$$$\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{2}{k}+\mathrm{2}\right)\:=\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{2}{k}\right) \\ $$$$=\mathrm{2}^{{n}} {n}!\:\Rightarrow \\ $$$${a}_{{n}} ={a}_{\mathrm{0}} .\frac{\mathrm{2}^{{n}} {n}!}{\left(\mathrm{2}{n}\right)!}.\frac{\mathrm{1}}{\mathrm{2}^{{n}} {n}!}\:\Rightarrow{a}_{{n}} =\frac{{a}_{{o}} }{\left(\mathrm{2}{n}\right)!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com