Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120064 by bemath last updated on 29/Oct/20

I = ∫ _0 ^(π/2) ((1/(ln (tan r))) + (1/(1−tan r)) ) dr

I=π20(1ln(tanr)+11tanr)dr

Answered by mnjuly1970 last updated on 29/Oct/20

I=^(∫_a ^( b) f(x)dx=∫_a ^( b) f(a+b−x)dx) ∫_0 ^( (π/2)) {(1/(−ln(tan(r))))+((tan(r))/(tan(r)−1))}dr  =∫_0 ^( (π/2)) ((−1)/(ln(tan(r)))) +1−(1/(1−tan(r)))dr  =−I+(π/2)  2I=(π/2) ⇒ I=(π/4) ✓     m.n.1970...

I=abf(x)dx=abf(a+bx)dx0π2{1ln(tan(r))+tan(r)tan(r)1}dr=0π21ln(tan(r))+111tan(r)dr=I+π22I=π2I=π4m.n.1970...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com