Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120092 by danielasebhofoh last updated on 29/Oct/20

Commented by Lordose last updated on 29/Oct/20

SMALL EINSTEIN..?��

Answered by Lordose last updated on 29/Oct/20

Ω = ∫((2x^2 +5)/(x^3 (√(x^4 +x^2 +1))))dx  set u= x^2  ⇒ du=2xdx  Ω = (1/2)∫((2u+5)/(u^2 (√(u^2 +u+1))))du  Ω = (1/2)∫(((1/u^2 )(2u+5))/( (√((u+(1/2))^2 + (3/4)))))du  set u + (1/2) = y ⇒ du=dy  Ω = (1/2)∫(((2/((y−(1/2)))) + (5/((y−(1/2))^2 )))/( (√(y^2  + (3/4)))))dy  set y = ((√3)/2)tanθ ⇒ dy = ((√3)/2)sec^2 θdθ  Ω = (1/2)∫ ((((√3)/2)secθ((2/( (1/2)((√3)tanθ−1))) + (5/((1/4)((√3)tanθ−1)^2 ))))/((√3)/2))dθ  Ω = (1/2)∫(((4secθ)/( (√3)tanθ−1)) + ((20secθ)/( ((√3)tanθ−1)^2 )))dθ  It′s easy from here

Ω=2x2+5x3x4+x2+1dxsetu=x2du=2xdxΩ=122u+5u2u2+u+1duΩ=121u2(2u+5)(u+12)2+34dusetu+12=ydu=dyΩ=122(y12)+5(y12)2y2+34dysety=32tanθdy=32sec2θdθΩ=1232secθ(212(3tanθ1)+514(3tanθ1)2)32dθΩ=12(4secθ3tanθ1+20secθ(3tanθ1)2)dθItseasyfromhere

Answered by mathmax by abdo last updated on 29/Oct/20

A =∫  ((2x^2 +5)/(x^3 (√(x^4 +x^2 +1))))dx  changement x^2 =t give  A =∫   ((2t+5)/(t(√t)(√(t^2 +t+1))))(dt/(2(√t))) =∫   ((2t+5)/(2t^2 (√(t^2 +t+1))))dt  =(1/2)∫   ((2t+5)/(t^2 (√((t+(1/2))^2 +(3/4))))) =_(t+(1/2)=((√3)/2)shu) (1/2)∫ ((2(((√3)/2)shu−(1/2))+5)/((((√3)/2)shu−(1/2))^2 (√(3/4))chu))((√3)/2)chudu  =2∫  (((√3)shu+4)/(((√3)shu−1)^2 ))du =2 ∫  (((√3)((e^u −e^(−u) )/2)+4)/(((√3)((e^u −e^(−u) )/2)−1)^2 ))du  =4∫  (((√3)e^u −(√3)e^(−u) +8)/(((√3)(e^u −e^(−u) )−2)^2 ))du =4 ∫  (((√3)e^u −(√3)e^(−u) +8)/(3(e^u −e^(−u) )^2 −4(√3)(e^u −e^(−u) )+4))du  =4∫  (((√3)e^u −(√3)e^(−u) +8)/(3(e^(2u) −2+e^(−2u) )−4(√3)e^u +4(√3)e^(−u) +4))du  =4∫ (((√3)e^u −(√3)e^(−u) +8)/(3e^(2u) −2 +3e^(−2u) −4(√3)e^u +4(√3)e^(−u) ))du  =4∫  (((√3)e^(3u) −(√3)e^u +8e^(2u) )/(3e^(4u) +3−4(√3)e^(3u) +4(√3)u−2e^(2u) ))du  =_(e^u =z)     4∫   (((√3)z^3 +8z^2 −(√3)z)/(3z^4 −4(√3)z^3 −2z^2 +4(√3)z +3))(dz/z)  =4∫ (((√3)z^2 +8z −(√3))/(3z^4 −4(√3)z^3 −2z^2 +4(√3)z +3))dx  rest decoposition...be continued  .......

A=2x2+5x3x4+x2+1dxchangementx2=tgiveA=2t+5ttt2+t+1dt2t=2t+52t2t2+t+1dt=122t+5t2(t+12)2+34=t+12=32shu122(32shu12)+5(32shu12)234chu32chudu=23shu+4(3shu1)2du=23eueu2+4(3eueu21)2du=43eu3eu+8(3(eueu)2)2du=43eu3eu+83(eueu)243(eueu)+4du=43eu3eu+83(e2u2+e2u)43eu+43eu+4du=43eu3eu+83e2u2+3e2u43eu+43eudu=43e3u3eu+8e2u3e4u+343e3u+43u2e2udu=eu=z43z3+8z23z3z443z32z2+43z+3dzz=43z2+8z33z443z32z2+43z+3dxrestdecoposition...becontinued.......

Answered by TANMAY PANACEA last updated on 29/Oct/20

∫(((2/x^3 )+(5/x^5 ))/( (√(1+(1/x^2 )+(1/x^4 )))))dx  t^2 =1+x^(−2) +x^(−4)   2tdt=(((−2)/x^3 )+((−4)/x^5 ))dx  −2tdt=((2/x^3 )+(4/x^5 ))dx  ∫(((2/x^3 )+(4/x^5 ))/( (√(1+(1/x^2 )+(1/x^4 )))))dx+∫((1/x^5 )/( (√(1+(1/x^2 )+(1/x^4 )))))dx  I=I_1 +I_2   I_1 =∫((−2tdt)/t)=−2t=−2((√(1+(1/x^2 )+(1/x^4 ))) )+c_1   I_2 =∫(dx/(x^5 (√((x^4 +x^2 +1)/x^4 ))))  =∫(dx/(x^3 (√(x^4 +x^2 +1))))→k=x^2    dk=2xdx  (1/2)∫((2xdx)/(x^4 (√(x^4 +x^2 +1))))  (1/2)∫(dk/(k^2 (√(k^2 +k+1))))  Wait  p=(1/k)→dp=((−dk)/k^2 )  (1/2)∫((−dp)/( (√((1/p^2 )+(1/p)+1))))  =(((−1)/2))∫((pdp)/( (√(p^2 +p+1))))  =(((−1)/4))∫((2p+1−1)/( (√(p^2 +p+1))))dp  =(((−1)/4))∫((d(p^2 +p+1))/( (√(p^2 +p+1))))+(1/4)∫(dp/( (√(p^2 +2p×(1/2)+(1/4)+(3/4)))))  =(((−1)/4))×((√(p^2 +p+1))/(1/2))+∫(dp/( (√((p+(1/2))^2 +(((√3)/2))^2 ))))  =(((−1)/2))(√(p^2 +p+1)) +ln{(p+(1/2))+(√((p+(1/2))^2 +(((√3)/2))^2 )) +c_2   p=(1/k)  and k=x^2   so replace p by=(1/x^2 )  I_2 =(((−1)/2))(√((1/x^4 )+(1/x^2 )+1)) +ln{((1/x^2 )+(1/2))+(√(((1/x^2 )+(1/2))^2 +(((√3)/2))^2 )) +c_2   now please add I_1  and I_(2 ) →I=I_1 +I_2

2x3+5x51+1x2+1x4dxt2=1+x2+x42tdt=(2x3+4x5)dx2tdt=(2x3+4x5)dx2x3+4x51+1x2+1x4dx+1x51+1x2+1x4dxI=I1+I2I1=2tdtt=2t=2(1+1x2+1x4)+c1I2=dxx5x4+x2+1x4=dxx3x4+x2+1k=x2dk=2xdx122xdxx4x4+x2+112dkk2k2+k+1Waitp=1kdp=dkk212dp1p2+1p+1=(12)pdpp2+p+1=(14)2p+11p2+p+1dp=(14)d(p2+p+1)p2+p+1+14dpp2+2p×12+14+34=(14)×p2+p+112+dp(p+12)2+(32)2=(12)p2+p+1+ln{(p+12)+(p+12)2+(32)2+c2p=1kandk=x2soreplacepby=1x2I2=(12)1x4+1x2+1+ln{(1x2+12)+(1x2+12)2+(32)2+c2nowpleaseaddI1andI2I=I1+I2

Commented by peter frank last updated on 30/Oct/20

thank you both

thankyouboth

Terms of Service

Privacy Policy

Contact: info@tinkutara.com