All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 120110 by benjo_mathlover last updated on 29/Oct/20
{4x24x2+1=y4y24y2+1=z4z24z2+1=xwherex,y,z≠0
Answered by bemath last updated on 29/Oct/20
⇒{1y=1+14x21z=1+14y21x=1+14z2(1+14x2−1x)+(1+14y2−1y)+(1+14z−1z)=0(1−12x)2+(1−12y)2+(1−12z)2=0→12x=12y=12z=1,(x,y,z)=(12,12,12)
Answered by mindispower last updated on 29/Oct/20
y=f(4x2),f(t)=tt+1,f′(t)⩾0,fincreasex,y,z⩾0z=f0f(4x2)x=fofof(4x2),fofincreasefonction4x2>4y2⇒f(4x2)>f(4y2)⇒y>z⇒4y2>4z2⇒f(4y2)>f(4z2)⇔z>xz<y⇒x>y>z>xabsurdex<yalso⇒x>ysox=y⇒x=4x24x2+1⇔x(4x2−4x+1)=0x(2x−1)2=0⇔x=0,x=12S=(x,y,z)∈{(12,12,12)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com