Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 120120 by benjo_mathlover last updated on 29/Oct/20

 { ((log _a (x) = 8)),((log _b (x) = 3 )),((log _c (x) = 6)) :} ⇒ log _(abc)  (x)=?

{loga(x)=8logb(x)=3logc(x)=6logabc(x)=?

Answered by bemath last updated on 29/Oct/20

 { ((log _a (x)=8⇒log _x (a)=(1/8))),((log _b (x)=3⇒ log _x (b)=(1/3))),((log _c (x)=6⇒log _x (c)=(1/6))) :}  Then log _(abc) (x) = (1/(log _x (abc))) = (1/((1/( 8))+(1/3)+(1/6)))                        = ((24)/(3+8+4)) = ((24)/(15)) = (8/5)

{loga(x)=8logx(a)=18logb(x)=3logx(b)=13logc(x)=6logx(c)=16Thenlogabc(x)=1logx(abc)=118+13+16=243+8+4=2415=85

Answered by $@y@m last updated on 29/Oct/20

x=a^8 =b^3 =c^6   a=x^(1/8) ,  b=x^(1/3) , c=x^(1/6)   abc=x^((1/8)+(1/3)+(1/6)) =x^((15)/(24))   log_x  (abc)=((15)/(24))  log _(abc)  (x)=((24)/(15))=(8/5)

x=a8=b3=c6a=x18,b=x13,c=x16abc=x18+13+16=x1524logx(abc)=1524logabc(x)=2415=85

Terms of Service

Privacy Policy

Contact: info@tinkutara.com