Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 12015 by Nayon last updated on 09/Apr/17

prove that for all x ∈R,  e^x ≥x^e

$${prove}\:{that}\:{for}\:{all}\:{x}\:\in{R}, \\ $$$${e}^{{x}} \geqslant{x}^{{e}} \\ $$

Answered by mrW1 last updated on 18/Apr/17

at x=e, e^x =x^e   f(x)=e^x   g(x)=x^e =e^(eln x)   f′(x)=e^x   f′′(x)=e^x   g′(x)=e^(eln x) (e/x)  g′′(x)=((e/x))^2 e^(eln x) −e^(eln x) (e/x^2 )=(e^(x+1) /x^2 )(e−1)  f′′(e)=e^e   g′′(e)=(e^(e+1) /e^2 )(e−1)=e^(e−1) (e−1)<e^(e−1) e=e^e   ⇒f′′(e)>g′′(e)  ⇒f(x)≥g(x)

$${at}\:{x}={e},\:{e}^{{x}} ={x}^{{e}} \\ $$$${f}\left({x}\right)={e}^{{x}} \\ $$$${g}\left({x}\right)={x}^{{e}} ={e}^{{e}\mathrm{ln}\:{x}} \\ $$$${f}'\left({x}\right)={e}^{{x}} \\ $$$${f}''\left({x}\right)={e}^{{x}} \\ $$$${g}'\left({x}\right)={e}^{{e}\mathrm{ln}\:{x}} \frac{{e}}{{x}} \\ $$$${g}''\left({x}\right)=\left(\frac{{e}}{{x}}\right)^{\mathrm{2}} {e}^{{e}\mathrm{ln}\:{x}} −{e}^{{e}\mathrm{ln}\:{x}} \frac{{e}}{{x}^{\mathrm{2}} }=\frac{{e}^{{x}+\mathrm{1}} }{{x}^{\mathrm{2}} }\left({e}−\mathrm{1}\right) \\ $$$${f}''\left({e}\right)={e}^{{e}} \\ $$$${g}''\left({e}\right)=\frac{{e}^{{e}+\mathrm{1}} }{{e}^{\mathrm{2}} }\left({e}−\mathrm{1}\right)={e}^{{e}−\mathrm{1}} \left({e}−\mathrm{1}\right)<{e}^{{e}−\mathrm{1}} {e}={e}^{{e}} \\ $$$$\Rightarrow{f}''\left({e}\right)>{g}''\left({e}\right) \\ $$$$\Rightarrow{f}\left({x}\right)\geqslant{g}\left({x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com