Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120316 by Bird last updated on 30/Oct/20

calculate ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx

calculate0π2xcosxcos(2x)dx

Answered by mathmax by abdo last updated on 30/Oct/20

let I=∫_0 ^(π/2)  (x/(cosx+sinx))dx we have proved that I=(π/(4(√2)))ln((((√2)+1)/((√2)−1)))  changement x =t−(π/2) give  I =−∫_0 ^(π/2)  ((t−(π/2))/(sint−cost))dt =(π/2)∫_0 ^(π/2)  (dt/(sint−cost))−∫_0 ^(π/2)  (t/(sint−cost))  =∫_0 ^(π/2)   (x/(cosx−sinx))dx +(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx)) ⇒  2I =∫_0 ^(π/2) x((1/(cosx+sinx))+(1/(cosx−sinx)))dx+(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx))  =∫_0 ^(π/2) ((x(2cosx))/(cos^2 x−sin^2 x))dx+(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx))  ⇒2 ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =2I−(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx)) ⇒  ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =I−(π/4)∫_0 ^(π/2)  (dx/(sinx−cosx))  we have  ∫_0 ^(π/2)  (dx/(sinx−cosx)) =_(tan((x/2))=t)     ∫_0 ^1  ((2dt)/((1+t^2 )(((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 )))))  =∫_0 ^1  ((2dt)/(2t−1+t^2 )) =2 ∫_0 ^1  (dt/(t^2 +2t−1)) =2∫_0 ^1  (dt/((t+1)^2 −2))  =2∫_0 ^1  (dt/((t+1−(√2))(t+1+(√2)))) =(2/(2(√2)))∫_0 ^1  ((1/(t+1−(√2)))−(1/(t+1+(√2))))  =(1/(√2))[ln∣((t+1−(√2))/(t+1+(√2)))∣]_0 ^1  =(1/(√2))ln∣((2−(√2))/(2+(√2)))∣−ln∣((1−(√2))/(1+(√2)))∣  =(1/(√2))ln(((2−(√2))/(2+(√2))))−ln((((√2)−1)/((√2)+1))) ⇒  ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =(π/(4(√2)))ln((((√2)+1)/((√2)−1)))−(π/(4(√2)))ln(((2−(√2))/(2+(√2))))+(π/4)ln((((√2)−1)/((√2)+1)))  =(π/4)((1/(√2))−1)ln((((√2)+1)/((√2)−1)))−(π/(4(√2)))ln(((2−(√2))/(2+(√2))))

letI=0π2xcosx+sinxdxwehaveprovedthatI=π42ln(2+121)changementx=tπ2giveI=0π2tπ2sintcostdt=π20π2dtsintcost0π2tsintcost=0π2xcosxsinxdx+π20π2dxsinxcosx2I=0π2x(1cosx+sinx+1cosxsinx)dx+π20π2dxsinxcosx=0π2x(2cosx)cos2xsin2xdx+π20π2dxsinxcosx20π2xcosxcos(2x)dx=2Iπ20π2dxsinxcosx0π2xcosxcos(2x)dx=Iπ40π2dxsinxcosxwehave0π2dxsinxcosx=tan(x2)=t012dt(1+t2)(2t1+t21t21+t2)=012dt2t1+t2=201dtt2+2t1=201dt(t+1)22=201dt(t+12)(t+1+2)=22201(1t+121t+1+2)=12[lnt+12t+1+2]01=12ln222+2ln121+2=12ln(222+2)ln(212+1)0π2xcosxcos(2x)dx=π42ln(2+121)π42ln(222+2)+π4ln(212+1)=π4(121)ln(2+121)π42ln(222+2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com