All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120316 by Bird last updated on 30/Oct/20
calculate∫0π2xcosxcos(2x)dx
Answered by mathmax by abdo last updated on 30/Oct/20
letI=∫0π2xcosx+sinxdxwehaveprovedthatI=π42ln(2+12−1)changementx=t−π2giveI=−∫0π2t−π2sint−costdt=π2∫0π2dtsint−cost−∫0π2tsint−cost=∫0π2xcosx−sinxdx+π2∫0π2dxsinx−cosx⇒2I=∫0π2x(1cosx+sinx+1cosx−sinx)dx+π2∫0π2dxsinx−cosx=∫0π2x(2cosx)cos2x−sin2xdx+π2∫0π2dxsinx−cosx⇒2∫0π2xcosxcos(2x)dx=2I−π2∫0π2dxsinx−cosx⇒∫0π2xcosxcos(2x)dx=I−π4∫0π2dxsinx−cosxwehave∫0π2dxsinx−cosx=tan(x2)=t∫012dt(1+t2)(2t1+t2−1−t21+t2)=∫012dt2t−1+t2=2∫01dtt2+2t−1=2∫01dt(t+1)2−2=2∫01dt(t+1−2)(t+1+2)=222∫01(1t+1−2−1t+1+2)=12[ln∣t+1−2t+1+2∣]01=12ln∣2−22+2∣−ln∣1−21+2∣=12ln(2−22+2)−ln(2−12+1)⇒∫0π2xcosxcos(2x)dx=π42ln(2+12−1)−π42ln(2−22+2)+π4ln(2−12+1)=π4(12−1)ln(2+12−1)−π42ln(2−22+2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com