Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120324 by mathocean1 last updated on 30/Oct/20

we are in C.  (E): z^3 +(4−5i)z^2 +(8−20i)z−40i=0  1) Show that (E) has one imaginary pure root  2) solve (E)

$$\mathrm{we}\:\mathrm{are}\:\mathrm{in}\:\mathbb{C}. \\ $$$$\left(\mathrm{E}\right):\:\mathrm{z}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{5i}\right)\mathrm{z}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{20i}\right)\mathrm{z}−\mathrm{40i}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{E}\right)\:\mathrm{has}\:\mathrm{one}\:\mathrm{imaginary}\:\mathrm{pure}\:\mathrm{root} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{solve}\:\left(\mathrm{E}\right) \\ $$

Answered by Olaf last updated on 31/Oct/20

(1)  Let z = iy  z^3 +(4−5i)z^2 +(8−20i)z−40i  = −iy^3 −(4−5i)y^2 +(20+8i)y−40i  = −4y^2 +20y+i(−y^3 +5y^2 +8y−40)  = −4y(y−5)−i(y^3 −5y^2 −8y+40)    If y = 5 :  −4y(y−5) = 0  and y^3 −5y^2 −8y+40 = 125−125−40+40 = 0    ⇒ 5i is a root of the polynome  z^3 +(4−5i)z^2 +(8−20i)z−40i    z^3 +(4−5i)z^2 +(8−20i)z−40i  = (z−5i)(z^2 +wz+8)    By identification :   { ((w−5i = 4−5i)),((−5wi+8 = 8−20i)) :}  ⇒ w = 4    z^3 +(4−5i)z^2 +(8−20i)z−40i  = (z−5i)(z^2 +4z+8)  = (z−5i)[(z+2)^2 +4]  (z+2)^2 +4 = 0 ⇔ z = −1±i    ⇒ S = {−1−i ; −1+i ; 5i }

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{z}\:=\:{iy} \\ $$$${z}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{5}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{20}{i}\right){z}−\mathrm{40}{i} \\ $$$$=\:−{iy}^{\mathrm{3}} −\left(\mathrm{4}−\mathrm{5}{i}\right){y}^{\mathrm{2}} +\left(\mathrm{20}+\mathrm{8}{i}\right){y}−\mathrm{40}{i} \\ $$$$=\:−\mathrm{4}{y}^{\mathrm{2}} +\mathrm{20}{y}+{i}\left(−{y}^{\mathrm{3}} +\mathrm{5}{y}^{\mathrm{2}} +\mathrm{8}{y}−\mathrm{40}\right) \\ $$$$=\:−\mathrm{4}{y}\left({y}−\mathrm{5}\right)−{i}\left({y}^{\mathrm{3}} −\mathrm{5}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{40}\right) \\ $$$$ \\ $$$$\mathrm{If}\:{y}\:=\:\mathrm{5}\:: \\ $$$$−\mathrm{4}{y}\left({y}−\mathrm{5}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:{y}^{\mathrm{3}} −\mathrm{5}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{40}\:=\:\mathrm{125}−\mathrm{125}−\mathrm{40}+\mathrm{40}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow\:\mathrm{5}{i}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynome} \\ $$$${z}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{5}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{20}{i}\right){z}−\mathrm{40}{i} \\ $$$$ \\ $$$${z}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{5}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{20}{i}\right){z}−\mathrm{40}{i} \\ $$$$=\:\left({z}−\mathrm{5}{i}\right)\left({z}^{\mathrm{2}} +{wz}+\mathrm{8}\right) \\ $$$$ \\ $$$$\mathrm{By}\:\mathrm{identification}\:: \\ $$$$\begin{cases}{{w}−\mathrm{5}{i}\:=\:\mathrm{4}−\mathrm{5}{i}}\\{−\mathrm{5}{wi}+\mathrm{8}\:=\:\mathrm{8}−\mathrm{20}{i}}\end{cases} \\ $$$$\Rightarrow\:{w}\:=\:\mathrm{4} \\ $$$$ \\ $$$${z}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{5}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{20}{i}\right){z}−\mathrm{40}{i} \\ $$$$=\:\left({z}−\mathrm{5}{i}\right)\left({z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{8}\right) \\ $$$$=\:\left({z}−\mathrm{5}{i}\right)\left[\left({z}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{4}\right] \\ $$$$\left({z}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{4}\:=\:\mathrm{0}\:\Leftrightarrow\:{z}\:=\:−\mathrm{1}\pm{i} \\ $$$$ \\ $$$$\Rightarrow\:\mathcal{S}\:=\:\left\{−\mathrm{1}−{i}\:;\:−\mathrm{1}+{i}\:;\:\mathrm{5}{i}\:\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com