Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 120427 by bramlexs22 last updated on 31/Oct/20

  lim_(x→0)  (((√(cos x+(√(2sin x+x)))) −1)/(sin x))

limx0cosx+2sinx+x1sinx

Answered by john santu last updated on 31/Oct/20

 lim_(x→0)  (((√(cos x+(√(2sin x+x))))−1)/(sin x)) =   lim_(x→0)  (1/( (√(cos x+(√(2sin x+x))))+1)) .lim_(x→0)  ((cos x−1+(√(2sin x+x)))/(sin x))  (1/2).lim_(x→0)  ((−2sin^2 (x/2)+(√(2sin x+x)))/(2sin (x/2)cos (x/2)))  (1/2).[lim_(x→0)  −tan ((x/2))+lim_(x→0)  (√((2sin x+x)/(sin^2 x))) ]  = (1/2). [ 0 +lim_(x→0)  (√(3/x)) ] = ∞

limx0cosx+2sinx+x1sinx=limx01cosx+2sinx+x+1.limx0cosx1+2sinx+xsinx12.limx02sin2(x/2)+2sinx+x2sin(x/2)cos(x/2)12.[limx0tan(x2)+limx02sinx+xsin2x]=12.[0+limx03x]=

Answered by mathmax by abdo last updated on 31/Oct/20

let f(x)=(((√(cosx+(√(2sinx+x))))−1)/(sinx))  we  have  cosx∼1−(x^2 /2) and  2sin(x)+x ∼2(x−(x^3 /6))+x =3x−(x^3 /3) ⇒  (√(2sinx+x))∼(√(3x−(x^3 /3)))=(√(3x))(√(1−(x^2 /9)))∼(√(3x))(1−(x^2 /(18))) ⇒  cosx+(√(2sinx+x))−1∼1−(x^2 /2) +(√(3x))(1−(x^2 /(18)))−1  ∼−(x^2 /2)+(√(3x))−((x^2 (√(3x)))/(18)) ⇒f(x)∼−(x/2)+((√3)/(√x))−x(√x)(√3) ⇒  lim_(x→0^+ )    f(x)=+∞

letf(x)=cosx+2sinx+x1sinxwehavecosx1x22and2sin(x)+x2(xx36)+x=3xx332sinx+x3xx33=3x1x293x(1x218)cosx+2sinx+x11x22+3x(1x218)1x22+3xx23x18f(x)x2+3xxx3limx0+f(x)=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com