All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 120427 by bramlexs22 last updated on 31/Oct/20
limx→0cosx+2sinx+x−1sinx
Answered by john santu last updated on 31/Oct/20
limx→0cosx+2sinx+x−1sinx=limx→01cosx+2sinx+x+1.limx→0cosx−1+2sinx+xsinx12.limx→0−2sin2(x/2)+2sinx+x2sin(x/2)cos(x/2)12.[limx→0−tan(x2)+limx→02sinx+xsin2x]=12.[0+limx→03x]=∞
Answered by mathmax by abdo last updated on 31/Oct/20
letf(x)=cosx+2sinx+x−1sinxwehavecosx∼1−x22and2sin(x)+x∼2(x−x36)+x=3x−x33⇒2sinx+x∼3x−x33=3x1−x29∼3x(1−x218)⇒cosx+2sinx+x−1∼1−x22+3x(1−x218)−1∼−x22+3x−x23x18⇒f(x)∼−x2+3x−xx3⇒limx→0+f(x)=+∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com