All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 120467 by help last updated on 31/Oct/20
Answered by mathmax by abdo last updated on 31/Oct/20
tan(θ+π3)=tanθ+tanπ31−tanθtan(π3)=tanθ+31−3tanθtan(θ+2π3)=tan(θ+π−π3)=tanθ−31+3tanθe⇒tanθ+tanθ+31−3tanθ+tanθ−31+3tant=3lettanθ=xsoe⇒x+x+31−3x+x−31+3x=3⇒x+(x+3)(1+3x)+(x−3)(1−3x)1−3x2=3⇒x+x+3x2+3+3x+x−3x2−3+3x1−3x2=3⇒x+8x1−3x2=3⇒x−3x3+8x=3−9x2⇒9x−3x3−3+9x2=0⇒3x−x3−1+3x2=0⇒−x3+3x2+3x−1=0⇒x3−3x2−3x+1=0−1isroots⇒x3−3x2−3x+1=(x+1)(x2+ax+b)b=1⇒(x+1)(x2+ax+1)=x3−3x2−3x+1⇒x3+ax2+x+x2+ax+1=x3−3x2−3x+1⇒(a+1)x2+(a+1)x+1=−3x2−3x+1⇒a+1=−3⇒a=−4⇒x3−3x2−3x+1=0⇒(x+1)(x2−4x+1)=0⇒x=−1orx2−4x+1=0tanx=−1⇒tanx=tan(−π4)⇒x=−π4+kπ(k∈Z)x2−4x+1=0→Δ′=4−1=3⇒x1=2+3andx2=2−3tanx=2+3⇒x=arctan(2+3)+Kπtanx=2−3⇒x=arctan(2−3)+kπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com