Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120467 by help last updated on 31/Oct/20

Answered by mathmax by abdo last updated on 31/Oct/20

tan(θ+(π/3)) =((tanθ +tan(π/3))/(1−tanθ tan((π/3)))) =((tanθ +(√3))/(1−(√3)tanθ))  tan(θ+((2π)/3)) =tan(θ+π−(π/3)) =((tanθ−(√3))/(1+(√3)tanθ))  e ⇒tanθ +((tanθ +(√3))/(1−(√3)tanθ)) +((tanθ−(√3))/(1+(√3)tant)) =3   let tanθ =x so e ⇒  x +((x+(√3))/(1−(√3)x))+((x−(√3))/(1+(√3)x)) =3 ⇒x +(((x+(√3))(1+(√3)x)+(x−(√3))(1−(√3)x))/(1−3x^2 ))=3  ⇒x +((x+(√3)x^2 +(√3)+3x+x−(√3)x^2 −(√3)+3x)/(1−3x^2 ))=3 ⇒  x+((8x)/(1−3x^2 ))=3 ⇒x−3x^3 +8x =3−9x^2  ⇒  9x−3x^3 −3+9x^2  =0 ⇒3x−x^3 −1+3x^2  =0 ⇒  −x^3 +3x^2 +3x−1 =0 ⇒x^3 −3x^2 −3x+1=0   −1 is roots  ⇒x^3 −3x^2 −3x+1 =(x+1)(x^2 +ax +b)  b=1 ⇒(x+1)(x^2  +ax+1) =x^3 −3x^2 −3x+1 ⇒  x^3 +ax^2  +x+x^2  +ax +1 =x^3 −3x^2 −3x+1 ⇒  (a+1)x^2 +(a+1)x+1 =−3x^2 −3x+1 ⇒a+1=−3 ⇒a=−4 ⇒  x^3 −3x^2 −3x+1 =0 ⇒(x+1)(x^2 −4x+1)=0 ⇒x=−1 or  x^2 −4x+1=0   tanx =−1 ⇒tanx =tan(−(π/4)) ⇒x =−(π/4)+kπ   (k∈Z)  x^2 −4x+1 =0 →Δ^′  =4−1=3 ⇒x_1 =2+(√3) and x_2 =2−(√3)  tanx =2+(√3) ⇒x =arctan(2+(√3))+Kπ  tanx =2−(√3) ⇒x =arctan(2−(√3)) +kπ

tan(θ+π3)=tanθ+tanπ31tanθtan(π3)=tanθ+313tanθtan(θ+2π3)=tan(θ+ππ3)=tanθ31+3tanθetanθ+tanθ+313tanθ+tanθ31+3tant=3lettanθ=xsoex+x+313x+x31+3x=3x+(x+3)(1+3x)+(x3)(13x)13x2=3x+x+3x2+3+3x+x3x23+3x13x2=3x+8x13x2=3x3x3+8x=39x29x3x33+9x2=03xx31+3x2=0x3+3x2+3x1=0x33x23x+1=01isrootsx33x23x+1=(x+1)(x2+ax+b)b=1(x+1)(x2+ax+1)=x33x23x+1x3+ax2+x+x2+ax+1=x33x23x+1(a+1)x2+(a+1)x+1=3x23x+1a+1=3a=4x33x23x+1=0(x+1)(x24x+1)=0x=1orx24x+1=0tanx=1tanx=tan(π4)x=π4+kπ(kZ)x24x+1=0Δ=41=3x1=2+3andx2=23tanx=2+3x=arctan(2+3)+Kπtanx=23x=arctan(23)+kπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com