Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120531 by A8;15: last updated on 01/Nov/20

Commented by Dwaipayan Shikari last updated on 01/Nov/20

∫e^x^x  dx=∫Σ_(n=0) ^∞ (((x^x )^n )/(n!))dx  =Σ_(n=0) ^∞ (1/(n!))∫x^(nx) dx  =Σ_(n=0) ^∞ (1/(n!))∫(e^(xlogx) )^n dx  =Σ_(n=0) ^∞ (1/(n!))∫e^(nxlogx) dx  =Σ_(n=0) ^∞ (1/(n!))∫Σ_(n=0) ^∞ (((nxlogx)^n )/(n!))dx  =Σ_(n=0) ^∞ (1/(n!))Σ_(n=0) ^∞ (1/(n!))∫n^n x^n log^n xdx    ∫_0 ^1 x^x dx=Σ_(n=0) ^∞ (((−1)^n )/((n+1)^((n+1)) ))

exxdx=n=0(xx)nn!dx=n=01n!xnxdx=n=01n!(exlogx)ndx=n=01n!enxlogxdx=n=01n!n=0(nxlogx)nn!dx=n=01n!n=01n!nnxnlognxdx01xxdx=n=0(1)n(n+1)(n+1)

Answered by Lordose last updated on 01/Nov/20

I prefer you use series

Ipreferyouuseseries

Terms of Service

Privacy Policy

Contact: info@tinkutara.com