Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 120541 by 77731 last updated on 01/Nov/20

Answered by snipers237 last updated on 01/Nov/20

Using  cos(z)=Σ_(n=0) ^∞ (((−1)^n z^(2n) )/((2n)!)) , 1−cosz=Σ_(n=1) ^∞ (((−1)^n z^(2n) )/((2n)!))   ∣1−cosz∣≤ Σ_(n=1) ^∞ ∣(((−1)^n z^(2n) )/((2n)!))∣=Σ_(n=1) ((∣z∣^(2n) )/((2n)!))  ∣1−cosz∣≤ ∣z∣^2 Σ_(p=0) ((∣z∣^(2p) )/((2p+2)! ))≤((∣z∣^2 )/2)Σ_(p=0) ^∞ ((∣z∣^(2p) )/((2p)!))     cause  (2p+2)≥2  Observes that  e^(∣z∣) =Σ_(p=0) ^∞ ((∣z∣^(2p) )/((2p)!)) +Σ_(p=0) ^∞ ((∣z∣^(2p+1) )/((2p+1)!)) ≥Σ_(p≥0) ((∣z∣^(2p) )/((2p)!))    LFYTC

$${Using}\:\:{cos}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\:,\:\mathrm{1}−{cosz}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\: \\ $$$$\mid\mathrm{1}−{cosz}\mid\leqslant\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mid\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\mid=\underset{{n}=\mathrm{1}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$\mid\mathrm{1}−{cosz}\mid\leqslant\:\mid{z}\mid^{\mathrm{2}} \underset{{p}=\mathrm{0}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}+\mathrm{2}\right)!\:}\leqslant\frac{\mid{z}\mid^{\mathrm{2}} }{\mathrm{2}}\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!}\:\:\:\:\:{cause}\:\:\left(\mathrm{2}{p}+\mathrm{2}\right)\geqslant\mathrm{2} \\ $$$${Observes}\:{that}\:\:{e}^{\mid{z}\mid} =\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!}\:+\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}+\mathrm{1}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)!}\:\geqslant\underset{{p}\geqslant\mathrm{0}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!} \\ $$$$ \\ $$$${LFYTC} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com