Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120558 by peter frank last updated on 01/Nov/20

Answered by mr W last updated on 01/Nov/20

from  e^(iθ) =cos θ+i sin θ  e^(−iθ) =cos θ−i sin θ  we get  cos θ=((e^(iθ) +e^(−iθ) )/2)  with θ=3+i:  cos (3+i)=((e^(i(3+i)) +e^(−i(3+i)) )/2)  =((e^(3i−1) +e^(−3i+1) )/2)  =(1/(2e))e^(3i) +(e/2)e^(−3i)   =(1/(2e))(cos 3+i sin 3)+(e/2)(cos 3−i sin 3)  =((cos 3)/2)(e+(1/e))−((sin 3)/2)(e−(1/e))i

fromeiθ=cosθ+isinθeiθ=cosθisinθwegetcosθ=eiθ+eiθ2withθ=3+i:cos(3+i)=ei(3+i)+ei(3+i)2=e3i1+e3i+12=12ee3i+e2e3i=12e(cos3+isin3)+e2(cos3isin3)=cos32(e+1e)sin32(e1e)i

Commented by peter frank last updated on 01/Nov/20

thank you

thankyou

Answered by TANMAY PANACEA last updated on 01/Nov/20

cos3cosi−sin3sini  cos3cosh−sin3×isinh

cos3cosisin3sinicos3coshsin3×isinh

Answered by mathmax by abdo last updated on 01/Nov/20

cos(3+i) =((e^(i(3+i)) +e^(−i(3+i)) )/2) =((e^(3i−1)  +e^(−3i+1) )/2)  =(1/2){e^(−1) (cos(3)+isin3)+e(cos3−isin3)}  =(1/2){(e+e^(−1) )cos3 +isin3(e^(−1) −e)}  =((e+e^(−1) )/2)cos(3)−isin(3)(((e−e^(−1) )/2)) =ch(1)cos(3)−ish(1)sin3

cos(3+i)=ei(3+i)+ei(3+i)2=e3i1+e3i+12=12{e1(cos(3)+isin3)+e(cos3isin3)}=12{(e+e1)cos3+isin3(e1e)}=e+e12cos(3)isin(3)(ee12)=ch(1)cos(3)ish(1)sin3

Commented by peter frank last updated on 01/Nov/20

thank  you

thankyou

Commented by mathmax by abdo last updated on 08/Nov/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com