All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120562 by peter frank last updated on 01/Nov/20
Answered by Dwaipayan Shikari last updated on 01/Nov/20
∫1−bx+12x2+bx+12dx=x−b∫x+12bx2+bx+12dx=x−b2∫2x+bx2+bx+12dx+24b−bx2+bx+12dx=x−b2log(x2+bx+12)−24−b22∫1(x+b2)2+(12−b24)2dx=x−b2log(x2+bx+12)−24−b22.112−b24tan−12x+b48−b2=x−b2log(x2+bx+12)−24−b248−b2tan−12x+b48−b2+C
Commented by peter frank last updated on 01/Nov/20
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com