Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 120654 by peter frank last updated on 01/Nov/20

∫_0 ^∞ (dx/([x+(√(1+x^2 )) ]^n ))

0dx[x+1+x2]n

Answered by mindispower last updated on 01/Nov/20

x=sh(t),n>1  ⇔∫_0 ^∞ ((ch(t)dt)/((ch(t)+sh(t))^n ))  =∫_0 ^∞ ((e^t +e^(−t) )/(2e^(nt) ))dt  =(1/2)[(e^((1−n)t) /(1−n))−(e^(−(1+n)t) /(1+n))]_0 ^∞    =(1/2)[(1/(n−1))+(1/(n+1))]=(n/(n^2 −1))

x=sh(t),n>10ch(t)dt(ch(t)+sh(t))n=0et+et2entdt=12[e(1n)t1ne(1+n)t1+n]0=12[1n1+1n+1]=nn21

Commented by peter frank last updated on 01/Nov/20

thank you

thankyou

Commented by mindispower last updated on 03/Nov/20

withe pleasur

withepleasur

Answered by MJS_new last updated on 01/Nov/20

∫(dx/((x+(√(x^2 +1)))^n ))=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))dt]  =(1/2)∫((t^2 +1)/t^(n+2) )dt=(1/2)∫(1/t^(n+2) )+(1/t^n )dt=  =−(1/(2(n+1)t^(n+1) ))−(1/(2(n−1)t^(n−1) ))= [⇒]  =−(((n+1)t^2 −(n−1))/(2(n^2 −1)t^(n+1) ))=  =(((x+n(√(x^2 +1)))(−x+(√(x^2 +1)))^n )/(1−n^2 ))+C  [⇒ ∫_0 ^∞ (dx/((x+(√(x^2 +1)))^n ))=  =[−(1/(2(n+1)t^(n+1) ))−(1/(2(n−1)t^(n−1) ))]_1 ^∞ =  =(n/(1−n^2 )) with n∈Z\{±1}

dx(x+x2+1)n=[t=x+x2+1dx=x2+1x+x2+1dt]=12t2+1tn+2dt=121tn+2+1tndt==12(n+1)tn+112(n1)tn1=[]=(n+1)t2(n1)2(n21)tn+1==(x+nx2+1)(x+x2+1)n1n2+C[0dx(x+x2+1)n==[12(n+1)tn+112(n1)tn1]1==n1n2withnZ{±1}

Commented by peter frank last updated on 01/Nov/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com