Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120724 by A8;15: last updated on 02/Nov/20

Commented by A8;15: last updated on 02/Nov/20

find S

Commented by prakash jain last updated on 02/Nov/20

side of triangle=a  ∠ADE=x⇒∠FDC=30−x  h=acos x  (1/2)a^2 cos xsin x=5  (1/2)a^2 cos (30−x)sin (30−x)=3  ((sin 2x)/(sin (60−2x)))=(5/3)  3sin 2x=5(sin 60cos 2x−cos 60sin 2x)  6sin 2x=5(√3)cos 2x−5sin 2x  tan 2x=((5(√3))/(11))  cos 2x=((11)/( (√(196))))=((11)/(14))  sin 2x=((5(√3))/(14))  S=(1/2)a^2 sin (30+x)cos (30+x)  =(a^2 /4)sin (60+2x)  =(a^2 /4)(sin 60cos 2x+cos 60sin 2x)  =(a^2 /4)(((√3)/2)×((11)/(14))+(1/2)×((5(√3))/(14)))=((a^2 (√3))/7)  (a^2 /4)sin 2x=5⇒a^2 =((20)/(sin 2x))=((20×14)/(5(√3)))  S=((20×14)/(5(√3)))×((√3)/7)=8  There should be an elegent solution without  requiring trigonometry.  MirW, ajfour or MJS  sir might suggest.

sideoftriangle=aADE=xFDC=30xh=acosx12a2cosxsinx=512a2cos(30x)sin(30x)=3sin2xsin(602x)=533sin2x=5(sin60cos2xcos60sin2x)6sin2x=53cos2x5sin2xtan2x=5311cos2x=11196=1114sin2x=5314S=12a2sin(30+x)cos(30+x)=a24sin(60+2x)=a24(sin60cos2x+cos60sin2x)=a24(32×1114+12×5314)=a237a24sin2x=5a2=20sin2x=20×1453S=20×1453×37=8Thereshouldbeanelegentsolutionwithoutrequiringtrigonometry.MirW,ajfourorMJSsirmightsuggest.

Answered by ajfour last updated on 06/Nov/20

Commented by ajfour last updated on 06/Nov/20

xcos (θ−30°)sin (θ−30°)=((10)/x)  ⇒  x^2 sin (2θ−60°)=20     ....(i)  similarly         x^2 sin (120°−2θ)=12   ...(ii)  also   xcos θsin θ=((2S)/x)  ⇒       x^2 sin 2θ=4S    ....(iii)  Adding  (i)&(ii)        2x^2 sin 30°cos (2θ−90°)=32  ⇒  x^2 sin 2θ = 32 = 4S  ⇒    S= 8   sq. units

xcos(θ30°)sin(θ30°)=10xx2sin(2θ60°)=20....(i)similarlyx2sin(120°2θ)=12...(ii)alsoxcosθsinθ=2Sxx2sin2θ=4S....(iii)Adding(i)&(ii)2x2sin30°cos(2θ90°)=32x2sin2θ=32=4SS=8sq.units

Terms of Service

Privacy Policy

Contact: info@tinkutara.com